- 5 (i) Sketch, on the same diagram and for $0 \le x \le 2\pi$, the graphs of $y = \frac{1}{4} + \sin x$ and $y = \frac{1}{2} \cos 2x$. [4]
 - (ii) The *x*-coordinates of the points of intersection of the two graphs referred to in part (i) satisfy the equation $2\cos 2x k\sin x = 1$. Find the value of *k*. [2]

The diagram shows a circle, centre *O* and radius 6 cm. The tangent from *X* touches the circle at *A* and XA = 10 cm. The line from *X* to *O* cuts the circle at *B*.

(i)	Show that angle <i>AOB</i> is approximately 1.03 radians.	[1]
(ii)	Find the perimeter of the shaded region.	[3]

[3]

[2]

(iii) Find the area of the shaded region.

8

7

In the diagram, angle ABC = angle ABD = 90°, AC = 6 m, BD = 5 m and angle ACB = angle DAB = θ .

(i)	Use each of the triangles ABC and ABD to express AB in terms of θ .	[2]
-----	--	-----

(ii)	Hence evaluate θ .	[5]
------	---------------------------	-----

- 7 The function f is defined, for $0^{\circ} \le x \le 360^{\circ}$, by $f(x) = 4 \cos 2x$.
 - (i) State the amplitude and period of f.
 - (ii) Sketch the graph of f, stating the coordinates of the maximum points. [4]
- 8 (a) Find all the angles between 0° and 360° which satisfy the equation $3(\sin x - \cos x) = 2(\sin x + \cos x).$ [4]
 - (b) Find all the angles between 0 and 3 radians which satisfy the equation $1 + 3 \cos^2 y = 4 \sin y.$ [4]

The diagram shows a right-angled triangle OPQ and a circle, centre O and radius r cm, which cuts OP and OQ at A and B respectively. Given that AP = 6 cm, PQ = 5 cm, QB = 7 cm and angle $OPQ = 90^{\circ}$, find

- (i) the length of the arc AB, [6]
- (ii) the area of the shaded region.
- 4 The function f is defined, for $0^{\circ} \le x \le 360^{\circ}$, by

$$f(x) = a\sin\left(bx\right) + c,$$

where a, b and c are positive integers. Given that the amplitude of f is 2 and the period of f is 120° ,

(i) state the value of a and of b. [2]

Given further that the minimum value of f is -1,

- (ii) state the value of c, [1]
- (iii) sketch the graph of f. [3]

10

The diagram shows an isosceles triangle *ABC* in which BC = AC = 20 cm, and angle BAC = 0.7 radians. *DC* is an arc of a circle, centre *A*. Find, correct to 1 decimal place,

- (i) the area of the shaded region, [4]
- (ii) the perimeter of the shaded region.

10 (a) Solve, for $0^{\circ} < x < 360^{\circ}$,

$$4\tan^2 x + 15 \sec x = 0.$$
 [4]

[4]

[4]

(b) Given that y > 3, find the smallest value of y such that

$$\tan(3y-2) = -5.$$
 [4]

- 3 Given that θ is acute and that $\sin \theta = \frac{1}{\sqrt{3}}$, express, without using a calculator, $\frac{\sin \theta}{\cos \theta \sin \theta}$ in the form $a + \sqrt{b}$, where *a* and *b* are integers. [5]
- 5 The function f is defined, for $0^{\circ} \le x \le 180^{\circ}$, by

$$\mathbf{f}(x) = A + 5\cos Bx,$$

where *A* and *B* are constants.

- (i) Given that the maximum value of f is 3, state the value of A. [1]
- (ii) State the amplitude of f.
- (iii) Given that the period of f is 120° , state the value of B.
- (iv) Sketch the graph of f.

The diagram, which is not drawn to scale, shows a circle *ABCDA*, centre *O* and radius 10 cm. The chord *BD* is 16 cm long. *BED* is an arc of a circle, centre *A*.

(i) Show that the length of AB is approximately 17.9 cm.

For the shaded region enclosed by the arcs BCD and BED, find

- (ii) its perimeter, (iii) its area.
- 8 (a) Solve, for $0 \le x \le 2$, the equation $1 + 5\cos 3x = 0$, giving your answer in radians correct to 2 decimal places. [3]
 - (b) Find all the angles between 0° and 360° such that

$$\sec y + 5\tan y = 3\cos y.$$
 [5]

[11]

[1]

[1]

[3]

10 The function f is defined, for $0^{\circ} \le x \le 180^{\circ}$, by

$$\mathbf{f}(x) = 3\cos 4x - 1.$$

- (i) Solve the equation f(x) = 0. [3]
- (ii) State the amplitude of f. [1]
- (iii) State the period of f. [1]

[2]

[3]

[4]

- (iv) State the maximum and minimum values of f.
- (v) Sketch the graph of y = f(x).

The diagram shows an isosceles triangle *ABC* in which AB = 8 m, BC = CA = 5 m. *ABDA* is a sector of the circle, centre *A* and radius 8 m. *CBEC* is a sector of the circle, centre *C* and radius 5 m.

- (i) Show that angle *BCE* is 1.287 radians correct to 3 decimal places. [2]
- (ii) Find the perimeter of the shaded region. [4]
- (iii) Find the area of the shaded region.

10 (a) Given that $a = \sec x + \csc x$ and $b = \sec x - \csc x$, show that

$$a^2 + b^2 \equiv 2\sec^2 x \csc^2 x.$$
^[4]

(b) Find, correct to 2 decimal places, the values of y between 0 and 6 radians which satisfy the equation

$$2\cot y = 3\sin y.$$
 [5]

[3]

[3]

11

The diagram shows a sector OACB of a circle, centre O, in which angle AOB = 2.5 radians. The line AC is parallel to OB.

(i) Show that angle $AOC = (5 - \pi)$ radians. [3]

Given that the radius of the circle is 12 cm, find

- (ii) the area of the shaded region, [3]
- (iii) the perimeter of the shaded region.

The diagram shows part of the graph of $y = a \tan(bx) + c$. Find the value of

(i)
$$c$$
, (ii) b , (iii) a .

The diagram shows a sector OAB of a circle, centre O, radius 4 cm. The tangent to the circle at A meets the line OB extended at C. Given that the area of the sector OAB is 10 cm^2 , calculate

(i)	the angle AOB in radians,	[2]

(ii) the perimeter of the shaded region. [4]

11 Solve the equation

- (i) $3\sin x + 5\cos x = 0$ for $0^{\circ} < x < 360^{\circ}$, [3]
- (ii) $3\tan^2 y \sec y 1 = 0$ for $0^\circ < y < 360^\circ$, [5]
- (iii) $\sin(2z 0.6) = 0.8$ for 0 < z < 3 radians. [4]

3 Show that
$$\frac{1-\cos^2\theta}{\sec^2\theta-1} = 1-\sin^2\theta.$$
 [4]

6 (a) Given that $\sin x = p$, find an expression, in terms of p, for $\sec^2 x$.

[2]

[4]

[2]

(b) Prove that $\sec A \csc A - \cot A = \tan A$.

The diagram shows a sector AOB of a circle, centre O, radius 15 cm. The length of the arc AB is 12 cm.

- (i) Find, in radians, angle *AOB*.
- (ii) Find the area of the sector *AOB*. [2]

- 11 (a) Find all the angles between 0° and 360° which satisfy
 - (i) $2\sin x 3\cos x = 0$, [3]
 - (ii) $2\sin^2 y 3\cos y = 0.$ [5]
 - (b) Given that $0 \le z \le 3$ radians, find, correct to 2 decimal places, all the values of z for which sin(2z + 1) = 0.9. [3]
- 10 Solve

(i)
$$4\sin x = \cos x$$
 for $0^{\circ} < x < 360^{\circ}$, [3]

(ii)
$$3 + \sin y = 3\cos^2 y$$
 for $0^\circ < y < 360^\circ$, [5]

(iii)
$$\sec\left(\frac{z}{3}\right) = 4$$
 for $0 < z < 5$ radians. [3]

- 6 (a) (i) On the same diagram, sketch the curves $y = \cos x$ and $y = 1 + \cos 2x$ for $0 \le x \le 2\pi$. [3]
 - (ii) Hence state the number of solutions of the equation

$$\cos 2x - \cos x + 1 = 0 \quad \text{where} \quad 0 \le x \le 2\pi.$$

- (b) The function f is given by $f(x) = 5\sin 3x$. Find
 - (i) the amplitude of f, [1]
 - (ii) the period of f.

The diagram shows a sector OXY of a circle centre O, radius 3 cm and a sector OAB of a circle centre O, radius 8 cm. The point X lies on the line OA and the point Y lies on the line OB. The perimeter of the region XABYX is 15.5 cm. Find

(i) the angle *AOB* in radians,

[3]

[1]

(ii) the ratio of the area of the sector OXY to the area of the region XABYX in the form p:q, where p and q are integers. [4]

- 4 (a) Given that $\sin x = p$ and $\cos x = 2p$, where x is acute, find the exact value of p and the exact value of $\cos x$. [3]
 - (b) Prove that $(\cot x + \tan x)(\cot x \tan x) = \frac{1}{\sin^2 x} \frac{1}{\cos^2 x}$. [3]

The diagram represents a company logo *ABCDA*, consisting of a sector *OABCO* of a circle, centre *O* and radius 6 cm, and a triangle *AOD*. Angle $AOC = 0.8\pi$ radians and *C* is the mid-point of *OD*. Find

(i)	the perimeter of the logo,	[7]
-----	----------------------------	----	---

(ii) the area of the logo.

[5]

- 11 (a) Solve, for 0 < x < 3 radians, the equation $4 \sin x 3 = 0$, giving your answers correct to 2 decimal places. [3]
 - (b) Solve, for $0^{\circ} < y < 360^{\circ}$, the equation $4 \csc y = 6 \sin y + \cot y$. [6]

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$.