The Petrochemical Industry

Crude Oil

In the past, most important organic chemicals were derived from coal. Nowadays, natural gas and crude petroleum provide an alternative source.

- complex mixture of hydrocarbons... arenes, cycloalkanes and alkanes
- · composition varies according to its source
- · it is a dark coloured, viscous liquid
- consists mostly of alkanes with up to 40 carbon atoms, plus water, sulphur and sand
- can be split up into fractions by FRACTIONAL DISTILLATION
- high boiling fractions may be broken down into useful lower boiling ones CRACKING
- ISOMERISATION produces branched alkanes
- REFORMING produces cycloalkanes and arenes

Fractional Distillation

- separates the compounds according to their boiling point
- at each level a mixture of compounds in a similar boiling range is taken off
- rough fractions can then be distilled further to obtain narrower boiling ranges
- some fractions are more important usually the lower boiling point ones

		Approximate boiling range / °C	C's per molecule	Name of fraction	Use(s)
		< 25	1 - 4	LPG (Liquefied Petroleum Gas)	Calor Gas Gamping Gas
		40-100	4 - 12	GASOLINE	Petrol
Vaporised crude oil		100-150	7 - 14	NAPHTHA	Petrochemicals
		150-200	11 - 15	KEROSINE	Aviation Fuel
		220-350	15 - 19	GAS OIL	Central Heating Fuel
		> 350	20 - 30	LUBRICATING OIL	Lubrication Oil
	 	> 400	30 - 40	FUEL OIL	Power Station Fuel Ship Fuel
		> 400	40 - 50	WAX, GREASE	Candles Grease for bearings
		> 400	> 50	BITUMEN	Road surfaces, Roofing

2812

CRACKING

Process

- involves the breaking of C-C bonds in alkanes
- · converts heavy fractions into higher value products

THERMAL Free radical mechanism · two types

> **CATALYTIC** Carbocation (carbonium ion) mechanism

THERMAL

- HIGH PRESSURE ... 7000 kPa
- HIGH TEMPERATURE ... 400°C to 900°C
- FREE RADICAL MECHANISM
- HOMOLYTIC FISSION
- PRODUCES MOSTLY ALKENES ... e.g. ETHENE for making polymers and ethanol
- PRODUCES HYDROGEN ... used in the Haber Process and in margarine manufacture

Examples

Bonds can be broken anywhere in the molecule by C-C bond fission or C-H bond fission

C-H fission

A C-H bond breaks to give a hydrogen radical and a butyl radical.

The hydrogen radical abstracts another hydrogen leaving two unpaired electrons on adjacent carbon atoms. These join together to form a second bond between the atoms.

an alkene and hydrogen are formed

C-C fission

C-C bond breaks to give two ethyl radicals.

One ethyl radical abstracts a hydrogen from the other, thus forming ethane. The unpaired electrons on adjacent carbons join together to form a second bond.

an alkene and an alkane are formed

- **CATALYTIC** SLIGHT PRESSURE
 - HIGH TEMPERATURE ... 450°C
 - ZEOLITE CATALYST
 - CARBOCATION (carbonium ion) MECHANISM
 - HETEROLYTIC FISSION
 - PRODUCES BRANCHED or CYCLIC ALKANES & AROMATIC HYDROCARBONS
 - MOTOR FUELS ARE A PRODUCT

Zeolites

Crystalline aluminosilicates - clay like substances

REFORMING

Process

• converts alkanes to cycloalkanes

cycloalkanes to arenes

Catalyst

 platinum and rhenium or platinum and iridium

Examples

and

ISOMERISATION

Process

• converts straight chain alkanes to branched alkanes

Catalyst

• platinum

Reason

• branched alkanes are used in car engines as combustion is easier and smoother because the molecules break down easier.

Example

$$\begin{array}{ccc} & & \text{CH}_3 \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 & \longrightarrow & \text{CH}_3-\overset{1}{\text{C}}-\text{CH}_2-\text{CH}_3 \\ & & \text{CH}_3 \end{array}$$

Q.1

What factors govern the importance of a particular fraction of distilled crude oil?

Q.2

Draw the structure of the most branched isomer of octane.

Q.3

Why were lead compounds added to petrol?