1 Find the coordinates of the points at which the straight line $y+2 x=7$ intersects the curve $y^{2}=x y-1$.

1 Find the values of k for which the line $y=k x-2$ meets the curve $y^{2}=4 x-x^{2}$.

5 Find the distance between the points of intersection of the curve $y=3+\frac{4}{x}$ and the line $y=4 x+9$.

2 Find the x-coordinates of the three points of intersection of the curve $y=x^{3}$ with the line $y=5 x-2$, expressing non-integer values in the form $a \pm \sqrt{b}$, where a and b are integers.

5 The straight line $5 y+2 x=1$ meets the curve $x y+24=0$ at the points A and B. Find the length of $A B$, correct to one decimal place.

3

The diagram shows a square $A B C D$ of area $60 \mathrm{~m}^{2}$. The point P lies on $B C$ and the sum of the lengths of $A P$ and $B P$ is 12 m . Given that the lengths of $A P$ and $B P$ are $x \mathrm{~m}$ and $y \mathrm{~m}$ respectively, form two equations in x and y and hence find the length of $B P$.

7 Solve, for x and y, the simultaneous equations

$$
\begin{gather*}
125^{x}=25\left(5^{y}\right), \\
7^{x} \div 49^{y}=1 . \tag{6}
\end{gather*}
$$

2 The line $y+4 x=23$ intersects the curve $x y+x=20$ at two points, A and B. Find the equation of the perpendicular bisector of the line $A B$.

3 The line $y=3 x+k$ is a tangent to the curve $x^{2}+x y+16=0$.
(i) Find the possible values of k.
(ii) For each of these values of k, find the coordinates of the point of contact of the tangent with the curve.

3 Find the coordinates of the points where the straight line $y=2 x-3$ intersects the curve $x^{2}+y^{2}+x y+x=30$.

2 The equation of a curve is $y=x^{3}-8$. Find the equation of the normal to the curve at the point where the curve crosses the x-axis.

4 The line $y=5 x-3$ is a tangent to the curve $y=k x^{2}-3 x+5$ at the point A. Find
(i) the value of k,
(ii) the coordinates of A.

10 The line $2 x+y=12$ intersects the curve $x^{2}+3 x y+y^{2}=176$ at the points A and B. Find the equation of the perpendicular bisector of $A B$.

1 Find the coordinates of the points of intersection of the curve $y^{2}+y=10 x-8 x^{2}$ and the straight line $y+4 x+1=0$.

6 The line $y=x+4$ intersects the curve $2 x^{2}+3 x y-y^{2}+1=0$ at the points A and B. Find the length of the line $A B$.
where n is a positive integer and $(r)=\frac{n!}{(n-r)!r!}$.

