3 Sets *H*, *M* and *P* are defined by

- $H = \{$ students studying history $\},$
- $M = \{$ students studying mathematics $\},$
- $P = \{$ students studying physics $\}.$

Express the following statements in set notation.

- (i) No student studies both history and physics.
- (ii) All physics students also study mathematics.

Describe in words which students belong to the set

(iii) $H' \cap M \cap P'$,

(iv) $(H \cup M) \cap P'$.

[5]

[3]

- 8 The universal set \mathscr{C} and the sets O, P and S are given by
 - $\mathscr{C} = \{x : x \text{ is an integer such that } 3 \le x \le 100\},\$
 - $O = \{x : x \text{ is an odd number}\},\$
 - $P = \{x : x \text{ is a prime number}\},\$
 - $S = \{x : x \text{ is a perfect square}\}.$

In the Venn diagram below, each of the sets O, P and S is represented by a circle.

- (i) Copy the Venn diagram and label each circle with the appropriate letter. [2]
- (ii) Place each of the numbers 34, 35, 36 and 37 in the appropriate part of your diagram. [2]
- (iii) State the value of $n(O \cap S)$ and of $n(O \cup S)$.
- **3** Given that $\mathscr{E} = \{$ students in a college $\},\$
 - $A = \{$ students who are over 180 cm tall $\},$
 - $B = \{$ students who are vegetarian $\},$
 - $C = \{$ students who are cyclists $\},$

express in words each of the following

(i)
$$A \cap B \neq \emptyset$$
, (ii) $A \subset C'$. [2]

Express in set notation the statement

(iii) all students who are both vegetarians and cyclists are not over 180 cm tall. [2]

The Venn diagram above represents the sets

- $\mathscr{E} = \{\text{homes in a certain town}\},\$
- $C = \{$ homes with a computer $\},$
- $D = \{$ homes with a dishwasher $\}.$

It is given that

and

 $n(C \cap D) = k,$ $n(C) = 7 \times n(C \cap D),$ $n(D) = 4 \times n(C \cap D),$ $n(\mathscr{C}) = 6 \times n(C' \cap D').$

- (i) Copy the Venn diagram above and insert, in each of its four regions, the number, in terms of k, of homes represented by that region.
- (ii) Given that there are 165 000 homes which do not have both a computer and a dishwasher , calculate the number of homes in the town. [2]

The Venn diagram above represents the universal set \mathscr{C} of all teachers in a college. The sets *C*, *B* and *P* represent teachers who teach Chemistry, Biology and Physics respectively. Sketch the diagram twice.

- (i) On the first diagram shade the region which represents those teachers who teach Physics and Chemistry but not Biology. [1]
- (ii) On the second diagram shade the region which represents those teachers who teach either Biology or Chemistry or both, but not Physics. [1]
- (b) In a group of 20 language teachers, *F* is the set of teachers who teach French and *S* is the set of teachers who teach Spanish. Given that n(F) = 16 and n(S) = 10, state the maximum and minimum possible values of
 - (i) $n(F \cap S)$,
 - (ii) $n(F \cup S)$.

[4]

0606/02/M/J/06

www.xtremepapers.net

- 2 (a) Illustrate the following statements using a separate Venn diagram for each.
 - (i) $A \cap B = \emptyset$, (ii) $(C \cup D) \subset E$.

(b)

Express, in set notation, the set represented by the shaded region.

[2]

[2]

[2]

6 (a)

Copy the diagram above and shade the region which represents the set $A' \cup B$. [1]

(b) The sets *P*, *Q* and *R* are such that

$$P \cap Q = \emptyset$$
 and $P \cup Q \subset R$.

Draw a Venn diagram showing the sets P, Q and R.

- (c) In a group of 50 students *F* denotes the set of students who speak French and *S* denotes the set of students who speak Spanish. It is given that n(F) = 24, n(S) = 18, $n(F \cap S) = x$ and $n(F' \cap S') = 3x$. Write down an equation in *x* and hence find the number of students in the group who speak neither French nor Spanish. [3]
- 7 (a) Sets A and B are such that

 $A = \{x : \sin x = 0.5 \text{ for } 0^{\circ} \le x \le 360^{\circ}\},\$

$$B = \{x : \cos(x - 30^\circ) = -0.5 \text{ for } 0^\circ \le x \le 360^\circ\}.$$

Find the elements of

(i)
$$A$$
, [2]

(ii)
$$A \cup B$$
. [2]

(b) Set *C* is such that

 $C = \{x : \sec^2 3x = 1 \text{ for } 0^\circ \le x \le 180^\circ\}.$

Find n(C).

[3]

Express, in set notation, the set represented by the shaded region. [1]

- (b) In a class of 30 students, 17 are studying politics, 14 are studying economics and 10 are studying both of these subjects.
 - (i) Illustrate this information using a Venn diagram. [1]

Find the number of students studying

- (ii) neither of these subjects, [1]
- (iii) exactly one of these subjects. [1]

1 (a)

Express, in set notation, the set represented by the shaded region. [1]

(b) In a class of 30 students, 17 are studying politics, 14 are studying economics and 10 are studying both of these subjects.

(i)	Illustrate this information using a Venn diagram.	[1]	
Find the number of students studying			
(ii)	neither of these subjects,	[1]	

(iii) exactly one of these subjects. [1]

1

(i) Copy the Venn diagram above and shade the region that represents $(A \cap B) \cup C$. [1]

- (ii) Copy the Venn diagram above and shade the region that represents $A' \cap B'$. [1]
- (iii) Copy the Venn diagram above and shade the region that represents $(A \cup B) \cap C$. [1]
- (b) It is given that the universal set $\mathscr{C} = \{x : 2 \le x \le 20, x \text{ is an integer}\},\ X = \{x : 4 < x < 15, x \text{ is an integer}\},\ Y = \{x : x \ge 9, x \text{ is an integer}\},\ Z = \{x : x \text{ is a multiple of }5\}.$
 - (i) List the elements of $X \cap Y$. [1]
 - (ii) List the elements of $X \cup Y$. [1]
 - (iii) Find $(X \cup Y)' \cap Z$.

- (i) Copy the Venn diagram above and shade the region that represents $A \cup (B \cap C)$. [1]
- (ii) Copy the Venn diagram above and shade the region that represents $A \cap (B \cup C)$. [1]
- (iii) Copy the Venn diagram above and shade the region that represents $(A \cup B \cup C)'$. [1]
- **8** Given that $x \in \mathbb{R}$ and that $\mathscr{E} = \{x : 2 < x < 10\}$,

$$A = \{x : 3x + 2 < 20\}$$

and
$$B = \{x : x^2 < 11x - 28\}$$

find the set of values of *x* which define

- (i) $A \cap B$,
- (ii) $(A \cup B)'$.

[1]

Copy the diagram and shade the region which represents the set $A \cup (B \cap C')$.

(b)

Express, in set notation, the set represented by the shaded region.

(c) The universal set \mathscr{C} and the sets *P* and *Q* are such that $n(\mathscr{C}) = 30$, n(P) = 18 and n(Q) = 16. Given that $n(P \cup Q)' = 2$, find $n(P \cap Q)$. [2]

For each of the Venn diagrams above, express the shaded region in set notation.

(b)

(i) Copy the Venn diagram above and shade the region that represents $A \cap B \cap C'$. [1]

(ii) Copy the Venn diagram above and shade the region that represents $A' \cap (B \cup C)$. [1]

[1]

[2]

[1]

3 (a) Shade the region corresponding to the set given below each Venn diagram.

(b) Given that $P = \{p : \tan p = 1 \text{ for } 0^{\circ} \le p \le 540^{\circ}\}$, find n(*P*).

2 (a)

Copy the diagram and shade the region which represents the set $A \cup (B \cap C')$. [1]

[1]

(b)

Copy the diagram and shade the region which represents the set $A \cup (B \cap C')$. [1]

(b)

Express, in set notation, the set represented by the shaded region. [1]

(c) The universal set \mathscr{C} and the sets *P* and *Q* are such that $n(\mathscr{C}) = 30$, n(P) = 18 and n(Q) = 16. Given that $n(P \cup Q)' = 2$, find $n(P \cap Q)$. [2]

- 2 (i) Find the first 3 terms of the expansion, in ascending powers of x, of $(1 + 3x)^6$. [2]
 - (ii) Hence find the coefficient of x^2 in the expansion of $(1 + 3x)^6 (1 3x 5x^2)$. [3]
- **3** Find the set of values of k for which the equation $x^2 + (k-2)x + (2k-4) = 0$ has real roots. [5]

(i) Copy the Venn diagram above and shade the region that represents $(A \cap B) \cup C$. [1]

- (ii) Copy the Venn diagram above and shade the region that represents $A' \cap B'$. [1]
- (iii) Copy the Venn diagram above and shade the region that represents $(A \cup B) \cap C$. [1]
- (b) It is given that the universal set $\mathscr{C} = \{x : 2 \le x \le 20, x \text{ is an integer}\}, X = \{x : 4 < x < 15, x \text{ is an integer}\}, Y = \{x : x \ge 9, x \text{ is an integer}\}, Z = \{x : x \text{ is a multiple of } 5\}.$
 - (i) List the elements of $X \cap Y$. [1]
 - (ii) List the elements of $X \cup Y$. [1]
 - (iii) Find $(X \cup Y)' \cap Z$. [1]

2 (a) Illustrate the following statements using a separate Venn diagram for each.

(i)
$$A \cap B = \emptyset$$
, (ii) $(C \cup D) \subset E$.

(b)

Express, in set notation, the set represented by the shaded region.

[2]

[2]

The diagram above shows a universal set \mathcal{E} and the three sets A, B and C.

Copy the above diagram and shade the region representing $(A \cap C') \cup B$. (i)

(ii)

Express, in set notation, the set represented by the shaded region in the diagram above. [1]

(b)

The diagram shows a universal set \mathscr{C} and the sets X and Y. Show, by means of two diagrams, that the set $(X \cup Y)'$ is not the same as the set $X' \cup Y'$. [2]

[1]

The Venn diagram above represents the universal set \mathscr{E} of all teachers in a college. The sets *C*, *B* and *P* represent teachers who teach Chemistry, Biology and Physics respectively. Sketch the diagram twice.

- (i) On the first diagram shade the region which represents those teachers who teach Physics and Chemistry but not Biology. [1]
- (ii) On the second diagram shade the region which represents those teachers who teach either Biology or Chemistry or both, but not Physics. [1]
- (b) In a group of 20 language teachers, *F* is the set of teachers who teach French and *S* is the set of teachers who teach Spanish. Given that n(F) = 16 and n(S) = 10, state the maximum and minimum possible values of
 - (i) $n(F \cap S)$,
 - (ii) $n(F \cup S)$.
- 3 Given that $\mathscr{E} = \{ \text{students in a college} \},\$
 - $A = \{$ students who are over 180 cm tall $\},\$
 - $B = \{$ students who are vegetarian $\},$
 - $C = \{$ students who are cyclists $\},$

express in words each of the following

(i)
$$A \cap B \neq \emptyset$$
, (ii) $A \subset C'$. [2]

Express in set notation the statement

(iii) all students who are both vegetarians and cyclists are not over 180 cm tall. [2]

[4]

8 The universal set \mathscr{C} and the sets O, P and S are given by

 $\mathscr{E} = \{x : x \text{ is an integer such that } 3 \le x \le 100\},\$

 $O = \{x : x \text{ is an odd number}\},\$

 $P = \{x : x \text{ is a prime number}\},\$

 $S = \{x : x \text{ is a perfect square}\}.$

In the Venn diagram below, each of the sets O, P and S is represented by a circle.

(i)	Copy the Venn diagram and label each circle with the appropriate letter.	[2]
(ii)	Place each of the numbers 34, 35, 36 and 37 in the appropriate part of your diagram.	[2]
(iii)) State the value of $n(O \cap S)$ and of $n(O \cup S)$.	[3]

3 Sets *H*, *M* and *P* are defined by

- $H = \{$ students studying history $\},$
- $M = \{$ students studying mathematics $\},$
- $P = \{$ students studying physics $\}$.

Express the following statements in set notation.

- (i) No student studies both history and physics.
- (ii) All physics students also study mathematics.

Describe in words which students belong to the set

- (iii) $H' \cap M \cap P'$,
- (iv) $(H \cup M) \cap P'$.