Acids and Alkalis

- All Acids contain H^{+}ions.
- Common examples are:

Hydrochloric acid: $\mathrm{H}^{+} \mathrm{Cl}^{-}$
Sulphuric Acid: $\quad \mathrm{H}_{2}{ }^{+} \mathrm{SO}_{4}{ }^{2-}$
Nitric Acid: $\quad \mathrm{H}^{+} \mathrm{NO}_{3}^{-}$

- All Alkalis contain OH-ions.
- Common examples are:

Sodium Hydroxide:
$\mathrm{Na}^{+} \mathrm{OH}^{-}$
Potassium Hydroxide: $\mathrm{K}^{+} \mathrm{OH}^{-}$
Barium Hydroxide: $\quad \mathrm{Ba}^{2+}\left(\mathrm{OH}^{-}\right)_{2}$

f.eactionis of Acjos

1. With Metals:

Metals above Hydrogen in the activity Series react with acids.

Acid + Metal $\mathrm{H}^{+} \mathrm{Cl}^{-}+\mathrm{Mg}$
or $\mathrm{H}^{+} \mathrm{NO}_{3}^{-}+\mathrm{Zn}$

Salt + Hydrogen
$\mathrm{Mg}^{2+}\left(\mathrm{Cl}^{-}\right)_{2}+\mathrm{H}_{2}$
$\mathrm{Zn}^{2+}\left(\mathrm{NO}_{3}^{-}\right)_{2}+\mathrm{H}_{2}$

Metals below Hydrogen in the Activity Series, such as copper, silver and gold, do not react with dilute acid.

Reactions of Acids(contd).

2.With Alkalis:

Acid + Alkali

Salt + Water
$\mathrm{H}^{+} \mathrm{Cl}^{-}+\mathrm{Na}^{+} \mathrm{OH}^{-}$

$$
\Longrightarrow \mathrm{Na}^{+} \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Note: The Main Reaction taking place is between the H^{+}ion and the OH^{-}ion which react to produce $\mathrm{H}_{2} \mathrm{O}$.This is a Neutralisation reaction which produces heat energy ie.An Exothermic
Na^{+}and Cl^{-}are said to be Spectator ions.ie They remain unchanged and don't take part in the reaction

Reactions of Acids(contd).

3. With Metal Carbonates:

Acids react with metal Carbonates to produce Salt, Carbon Dioxide and water.
Acid + Metal Carbonatel
$\mathrm{H}^{+} \mathrm{Cl}^{-}+\mathrm{CaCO}_{3}$

The test for CO_{2} is that it turns limewater milky.

Reactions of Acids(contd).

4. With Metal Oxides:

Acid + Metal Oxide Salt + Water

$$
\mathrm{H}^{+} \mathrm{Cl}^{-}+\mathrm{CuO} \quad \mathrm{Cu}^{2+}\left(\mathrm{Cl}^{-}\right)_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Note:Alkalis,Metal Carbonates and Metal Oxides can be regarded as Bases. This because they can all remove $\mathrm{H}+$ ions from solution and produce water.

Salts. These can be regarded as Acids whose H^{+}ions has been replaced with metal ions.eg. $\mathrm{NaCl}, \mathrm{KNO}_{3}$ and BaSO_{4}
Salts can be prepared by the four methods mentioned earlier but they can also be made by adding two salts together which results in their lons crossing over.

The purpose of a Titration is to Titrations accurately determine the volume of acid required to neutralise an alkali of known volume and concentration and vice versa.

A Pipette is

 used to fill a conical flask with 25 ml of Alkali of known concentration ith HCl acid is ided slowly ntil the Endoint is reached .The colour ranges from purple to green.25 ml of $\mathrm{NaOH}+$ five drops of Universal

