www.studyguide.pk

Physics Equation List :Form 4 Introduction to Physics

Relative Deviation

$$
\text { Relative Deviation }=\frac{\text { Mean Deviation }}{\text { Mean Value }} \times 100 \%
$$

Prefixes

Prefixes	Value	Standard form	Symbol
Tera	1000000000000	10^{12}	T
Giga	1000000000	10^{9}	G
Mega	1000000	10^{6}	M
Kilo	1000	10^{3}	k
deci	0.1	10^{-1}	d
centi	0.01	10^{-2}	c
milli	0.001	10^{-3}	m
micro	0.000001	10^{-6}	$\mathrm{\mu}$
nano	0.000000001	10^{-9}	n
pico	0.000000000001	10^{-12}	p

Units for Area and Volume
$\left.\begin{array}{llll}1 \mathrm{~m}=10^{2} \mathrm{~cm} & (100 \mathrm{~cm}) \\ 1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2} & \left(10,000 \mathrm{~cm}^{2}\right) & 1 \mathrm{~cm} & =10^{-2} \mathrm{~m} \\ 1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{3} & \left(1,000,000 \mathrm{~cm}^{3}\right) & 1 \mathrm{~cm}^{2}=10^{-4} \mathrm{~m}^{2} & \left(\frac{1}{100} \mathrm{~m}\right) \\ & & 1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3} & \left(\frac{1}{10,000} \mathrm{~m}^{2}\right) \\ & & & \\ & & 1,000,000\end{array} m^{3}\right)$

www.studyguide.pk
 Force and Motion

$$
\text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }}
$$

Velocity

$$
V=\frac{S}{t} \quad \begin{array}{ll}
v=\text { velocity } \\
s=\text { displacement } \\
t=\text { time }
\end{array} \quad \begin{aligned}
& \left(m s^{-1}\right) \\
& (m)
\end{aligned}
$$

Acceleration

$$
a=\frac{V-U}{t} \quad \begin{aligned}
& a=\text { acceleration } \\
& v=\text { final velocity } \\
& u=\text { initial velocity } \\
& t=\text { time for the velocity change }
\end{aligned}
$$

Equation of Linear Motion

$u=$ initial velocity	$\left(\mathrm{ms}^{-1}\right)$
$v=$ final velocity	$\left(\mathrm{ms}^{-1}\right)$
$a=$ acceleration	$\left(\mathrm{ms}^{-2}\right)$
$s=$ displacement	(m)
$t=$ time	(s)

www.studyguide.pk

Ticker Tape

Finding Velocity:

$$
\text { velocity }=\frac{s}{\text { number of ticks } \times 0.02 \mathrm{~s}}
$$

$$
1 \text { tick }=0.02 \mathrm{~s}
$$

Finding Acceleration:

Graph of Motion

Gradient of a Graph

The gradient ' m ' of a line segment between two points and is defined as follows:

Gradient, $m=\frac{\text { Change in y coordinate, } \Delta y}{\text { Change in } x \text { coordinate, } \Delta x}$
or
$m=\frac{\Delta y}{\Delta x}$

www.studyguide.pk

Displacement-Time Graph	Velocity-Time Graph
Gradient $=$ Velocity (ms^{-1})	Gradient $=$ Acceleration $\left(\mathrm{ms}^{-2}\right)$ Area in between the graph and x-axis $=$ Displacement

Momentum

$$
P=m \times V \quad \begin{array}{ll}
p=\text { momentum } \\
m=\text { mass } \\
v=\text { velocity }
\end{array}, \begin{aligned}
& \left(\mathrm{kg} \mathrm{~ms}^{-1}\right) \\
& \left(\mathrm{kg}^{-1}\right)
\end{aligned}
$$

Principle of Conservation of Momentum

$$
\begin{array}{ll}
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \\
m_{1}=\text { mass of object } 1 & (\mathrm{~kg}) \\
m_{2}=\text { mass of object } 2 & \left.(\mathrm{~kg})^{2}\right) \\
u_{1}=\text { initial velocity of object } 1 & \left(\mathrm{~ms}^{-1}\right) \\
u_{2}=\text { initial velocity of object } 2 & \left(\mathrm{~ms}^{-1}\right) \\
v_{1}=\text { final velocity of object } 1 & \left(\mathrm{~ms}^{-1}\right) \\
v_{2}=\text { final velocity of object } 2 & \left(\mathrm{~ms}^{-1}\right)
\end{array}
$$

Newton's Law of Motion

Newton's First Law
In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).

www.studyguide.pk

Newton's Second Law

The rate of change of momentum of a body is directly proportional to the
 resultant force acting on the body and is in the same direction.

$$
F=m a
$$

$$
\begin{array}{ll}
F=\text { Net Force } & \left(\mathrm{N}^{2} \text { or } \mathrm{kgms}^{-2}\right) \\
m=\text { mass } & (\mathrm{kg}) \\
a=\text { acceleration } & \left(\mathrm{ms}^{-2}\right)
\end{array}
$$

Implication

When there is resultant force acting on an object, the object will accelerate (moving faster, moving slower or change direction).

Newton's Third Law

Newton's third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.

Impulse

$$
\begin{array}{rl}
\text { Impulse }=F t & \begin{array}{l}
F=\text { force } \\
t=\text { time }
\end{array} \\
\text { Impulse }=m v-m u & m=\text { mass } \\
v=\text { final velocity } \tag{s}\\
u=\text { initial velocity }
\end{array}
$$

Impulsive Force

$$
F=\frac{m v-m u}{t} \quad \begin{array}{ll}
F=\text { Force } \\
t=\text { time } \\
m=\text { mass } \\
v=\text { final velocity } \\
u=\text { initial velocity }
\end{array} \quad \begin{aligned}
& (\mathrm{N} \text { or } \mathrm{k} \\
& (\mathrm{sg}) \\
& \left(\mathrm{ms}^{-1}\right) \\
& \left(\mathrm{ms}^{-1}\right)
\end{aligned}
$$

Gravitational Field Strength

$$
g=\frac{F}{m} \quad \begin{array}{ll}
g=\text { gravitational field strength } & \left(\mathrm{N} \mathrm{~kg}^{-1}\right) \\
F=\text { gravitational force } \\
m=\text { mass }
\end{array} \quad \begin{aligned}
& (\mathrm{Nor} \mathrm{kgms}) \\
& (\mathrm{kg})
\end{aligned}
$$

Weight

$$
\begin{array}{lll}
\hline \begin{array}{l}
W=\text { Weight } \\
m=\text { mass }
\end{array} & (\mathrm{kg}) & \left(\mathrm{N} \text { or } \mathrm{kgms}^{-2}\right) \\
\hline \tag{kg}
\end{array}
$$

$g=$ gravitational field strength/gravitational acceleration

www.studyguide.pk

Vertical Motion

- If an object is release from a high position: - The initial velocity, $\mathrm{u}=0$. - The acceleration of the object = gravitational acceleration $=10 \mathrm{~ms}^{-2}\left(\right.$ or $\left.9.81 \mathrm{~ms}^{-2}\right)$. - The displacement of the object when it reach the ground $=$ the height of the original position, h.	- If an object is launched vertically upward: - The velocity at the maximum height, $\mathrm{v}=0$. - The deceleration of the object $=$-gravitational acceleration $=-10 \mathrm{~ms}^{-2}$ (or $-9.81 \mathrm{~ms}^{-2}$). - The displacement of the object when it reach the ground $=$ the height of the original position, h.

Lift

In Stationary	- When a man standing inside an elevator, there are two forces acting on him. (a) His weight, which acting downward. (b) Normal reaction (R), acting in the opposite direction of weight.
	The reading of the balance is equal to the normal reaction.

www.studyguide.pk

Moving Upward with positive acceleration	Moving downward with positive acceleration

www.studyguide.pk

Smooth Pulley

With 1 Load

	$\mathrm{T}_{1}=\mathrm{T}_{2}$	Moving with uniform speed: $\mathrm{T}_{1}=\mathrm{mg}$
	Stationary:	Accelerating:
$\mathrm{mg} \downarrow$		$\mathrm{T}_{1}-\mathrm{mg}=\mathrm{ma}$

With 2 Loads

	Finding Acceleration: (If $\mathrm{m}_{2}>\mathrm{m}_{1}$) $\mathrm{m}_{2} \mathrm{~g}-\mathrm{m}_{1} \mathrm{~g}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{a}$	
	Finding Tension: (If $\mathrm{m}_{2}>\mathrm{m}_{1}$)	$\begin{gathered} \mathrm{T}_{1}=\mathrm{T}_{2} \\ \mathrm{~T}_{1}-\mathrm{m}_{1} \mathrm{~g}=\mathrm{ma} \\ \mathrm{~m}_{2} \mathrm{~g}-\mathrm{T}_{2}=\mathrm{ma} \end{gathered}$

Vector

Vector Addition (Perpendicular Vector)

x

Magnitude $=\sqrt{x^{2}+y^{2}}$
Direction $=\tan ^{-1} \frac{|y|}{|x|}$

Vector Resolution

$$
\begin{aligned}
& |x|=|p| \sin \theta \\
& |y|=|p| \cos \theta
\end{aligned}
$$

www.studyguide.pk

Inclined Plane

Component parallel to the plane	$=\boldsymbol{m g} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$
Component perpendicular to the plane	$=\boldsymbol{m g} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$

Forces In Equilibrium

$T_{3}=m g$
$T_{2} \sin \theta=m g$
$T_{2} \cos \theta=T_{1}$
$T_{1} \tan \theta=m g$

$T_{3}=m g$
$T_{2} \cos \theta=T_{1} \cos \alpha$
$T_{2} \sin \theta+T_{1} \sin \alpha=m g$

Work Done

When the force and motion are in the same direction.

Work Done	$(\mathrm{J}$ or Nm$)$
Force	(N or kgms^{-2})
lisplacement	(m)

www.studyguide.pk

Kinetic Energy
$E_{K}=\frac{1}{2} m v^{2}$

$E_{K}=$ Kinetic Energy	(J)
$m=$ mass	$\left(\mathrm{kg}^{-1}\right.$
$v=$ velocity	$\left(\mathrm{ms}^{-1}\right)$

Gravitational Potential Energy
$E_{P}=m g h$
$E_{P}=$ Potential Energy
$m=$ mass
$g=$ gravitational acceleration
$h=$ height

Elastic Potential Energy

$$
\begin{array}{ll}
E_{P}=\frac{1}{2} k x^{2} & \begin{array}{l}
E_{P}=\text { Potential Energy } \\
k=\text { spring constant } \\
x=\text { extension of spring }
\end{array} \\
E_{P}=\frac{1}{2} F X & F=\text { Force }
\end{array}
$$

Power and Efficiency

Power

$$
\begin{array}{rll}
P=\frac{W}{t} & \begin{array}{l}
P=\text { power } \\
W=\text { work done } \\
E=\text { energy change }
\end{array} & \begin{array}{l}
\left(W \text { or } J s^{-1}\right) \\
(\mathrm{J} \text { or } \mathrm{Nm}) \\
(\mathrm{J} \text { or } \mathrm{Nm})
\end{array} \\
P=\frac{E}{t=\text { time }} & & \text { (s) }
\end{array}
$$

Efficiency

$$
\text { Efficiency }=\frac{\text { Useful Energy }}{\text { Energy }} \times 100 \%
$$

Or

$$
\text { Efficiency }=\frac{\text { Power Output }}{\text { Power Input }} \times 100 \%
$$

Hooke's Law

$$
F=k x
$$

www.studyguide.pk
 Force and Pressure

Density

\[

\]

$\begin{array}{ll}P=\text { Pressure } & \left(\text { Pa or } N m^{-2}\right) \\ A=\text { Area of the surface } & \left(\mathrm{m}^{2}\right)\end{array}$
$F=$ Force acting normally to the surface $\left(\mathrm{N} \mathrm{or} \mathrm{kgms}^{-2}\right)$

Liquid Pressure
$P=h \rho g$

$h=$ depth	(m)
$\rho=$ density	$\left(\mathrm{kg} \mathrm{m}^{-3}\right)$
$g=$ gravitational Field Strength	$\left(N \mathrm{~kg}^{-1}\right)$

Pressure in Liquid
$P=P_{a t m}+h \rho g$
$h=$ depth
(m)
$\rho=$ density
$\left(\mathrm{kg} \mathrm{m}^{-3}\right)$
$g=$ gravitational Field Strength
($N \mathrm{~kg}^{-1}$)
$P_{\text {atm }}=$ atmospheric Pressure
(Pa or Nm^{-2})

Gas Pressure

Manometer

www.studyguide.pk

U=tube

$$
h_{1} \rho_{1}=h_{2} \rho_{2}
$$

Pressure in a Capillary Tube

$P_{\text {gas }}=P_{\text {atm }}$
$P_{\text {gas }}=$ gas pressure in the capillary tube
$P_{\text {atm }}=$ atmospheric pressure
$h=$ length of the captured mercury
$\rho=$ density of mercury
$g=$ gravitational field strength

$\mathrm{P}_{\mathrm{gas}}=\mathrm{P}_{\mathrm{atm}}-\mathrm{hpg}$
(Pa or Nm^{-2})
(Pa or Nm^{-2})
(m)
$\left(\mathrm{kg} \mathrm{m}^{-3}\right)$
($N \mathrm{~kg}^{-1}$)

Barometer

$\left(\right.$ Density of mercury $\left.=13600 \mathrm{kgm}^{-3}\right)$

www.studyguide.pk

Pascal's Principle

$F_{1}=$ Force exerted on the small piston
$A_{1}=$ area of the small piston
$F_{2}=$ Force exerted on the big piston
$A_{2}=$ area of the big piston

Archimedes Principle

	Weight of the object, $W=\rho_{1} V_{1} g$ Upthrust, $F=\rho_{2} V_{2} g$ $\rho_{1}=$ density of wooden block $V_{1}=$ volume of the wooden block $\rho_{2}=$ density of water $V_{2}=$ volume of the displaced water $g=$ gravitational field strength
Density of water > Density of wood $\begin{gathered} \mathrm{F}=\mathrm{T}+\mathrm{W} \\ \rho V q=T+m q \end{gathered}$	Density of Iron > Density of water $\begin{gathered} \mathrm{T}+\mathrm{F}=\mathrm{W} \\ \rho V g+T=m g \\ \hline \end{gathered}$

www.studyguide.pk

Heat

Heat Change

$$
Q=m c \theta
$$

$m=$ mass
$c=$ specific heat capacity
$\theta=$ temperature change
(kg)
($\mathrm{Jkg}^{-1}{ }^{\mathrm{o}} \mathrm{C}^{-1}$)
($\left.{ }^{\circ}\right)$

Electric Heater	Mixing 2 Liquid
Energy Supply, $E=P t$ Energy Receive, $Q=m c \theta$ Energy Supply, E = Energy Receive, Q $P t=m c \theta$ E = electrical Energy (J or Nm) $P=$ Power of the electric heater (W) $t=$ time (in second) (s) $Q=$ Heat Change (J or Nm) $m=$ mass (kg) $c=$ specific heat capacity $\left(\mathrm{Jkg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)$ $\theta=$ temperature change $\quad{ }^{\circ}$)	Heat Gain by Liquid $1=$ Heat Loss by Liquid 2 $m_{1} c_{1} \theta_{1}=m_{2} c_{2} \theta_{2}$ $m_{1}=$ mass of liquid 1 $c_{1}=$ specific heat capacity of liquid 1 $\theta_{1}=$ temperature change of liquid 1 $m_{2}=$ mass of liquid 2 $c_{2}=$ specific heat capacity of liquid 2 $\theta_{2}=$ temperature change of liquid 2

Specific Latent Heat

$$
Q=m L
$$

$$
\begin{array}{ll}
Q=\text { Heat Change } & (\mathrm{J} \text { or } \mathrm{Nm}) \\
m=\text { mass } & (\mathrm{kg})^{2}=\text { specific latent heat } \\
\left(\mathrm{Jg}^{-1}\right)
\end{array}
$$

Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

(Requirement: Temperature in constant)

Pressure Law

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

www.studyguide.pk

Charles's Law

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

(Requirement: Pressure is constant) Universal Gas Law

$$
\begin{array}{lcc}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
P=\text { Pressure } & & \left(\text { Pa or } \mathrm{cmHg}^{3} \ldots \ldots\right) \\
V=\text { Volume } & & \left(\mathrm{m}^{3} \text { or } \mathrm{cm}^{3}\right) \\
T=\text { Temperature } & & (\text { MUST be in K(Kelvin) })
\end{array}
$$

Refractive Index

Snell's Law
Real depth/Apparent Depth

	$\begin{array}{lc} \qquad & n=\frac{D}{d} \\ \\ n=\text { refractive index } & \quad(\text { No unit) } \\ D=\text { real depth } & \quad(\mathrm{m} \text { or } \mathrm{cm} . . \text {) } \\ d=\text { apparent depth } & \text { (} \mathrm{m} \text { or cm...) } \end{array}$
Speed of light $\begin{array}{ll} \qquad & n=\frac{c}{v} \\ n=\text { refractive index } & \text { (No unit) } \\ c=\text { speed of light in vacuum } & \left(\mathrm{ms}^{-1}\right) \\ v=\text { sneed of liaht in a medium } & \text { (like water, } \end{array}$	Total Internal Reflection $\begin{array}{ll} \qquad n=\frac{1}{\sin c} \\ n=\text { refractive index } & \text { (No unit) } \\ c=\text { critical angle } & \text { (} \left.^{\circ}\right) \end{array}$

www.studyguide.pk

Lens

Power

$$
P=\frac{1}{f}
$$

$P=$ Power
$f=$ focal length
(D(Diopter))
(m)

Linear Magnification

$$
m=\frac{h_{i}}{h_{o}} \quad m=\frac{v}{u} \quad \frac{h_{i}}{h_{o}}=\frac{v}{u}
$$

$$
\begin{aligned}
& m=\text { linear magnification } \\
& u=\text { distance of object } \\
& v=\text { distance of image } \\
& h_{i}=\text { heigth of image } \\
& h_{o}=\text { heigth of object }
\end{aligned}
$$

(No unit)
(m or cm...)
(m or cm...)
(m or cm...)
(m or cm...)

Lens Equation

Conventional symbol

$$
\frac{1}{u}+\frac{1}{v}=\frac{1}{f}
$$

	positive negative	
u	Real object	Virtual object
v	Real image	Virtual image
f	Convex lens	Concave lens

www.studyguide.pk

Astronomical Telescope

Magnification,

$$
m=\frac{P_{e}}{P_{o}} \quad m=\frac{f_{o}}{f_{e}}
$$

$m=$ linear magnification
$P_{e}=$ Power of the eyepiece
$P_{o}=$ Power of the objective lens
$f_{e}=$ focal length of the eyepiece
$f_{o}=$ focal length of the objective lens

Distance between eye lens and objective lens

$$
d=f_{o}+f_{e}
$$

d = Distance between eye lens and objective lens
$f_{e}=$ focal length of the eyepiece
$f_{o}=$ focal length of the objective lens

Compound Microscope

Magnification

$$
\begin{aligned}
m & =m_{1} \times m_{2} \\
& =\frac{\text { Height of first image, } I_{1}}{\text { Height of object }} \times \frac{\text { Height of second image, } I_{2}}{\text { Height of first image , } I_{1}} \\
& =\frac{\text { Height of second image, } I_{2}}{\text { Height of object, } I_{1}}
\end{aligned}
$$

$m=$ Magnification of the microscope
$m_{1}=$ Linear magnification of the object lens
$m_{2}=$ Linear magnification of the eyepiece
Distance in between the two lens

$$
d>f_{o}+f_{e}
$$

$d=$ Distance between eye lens and objective lens
$f_{e}=$ focal length of the eyepiece
$f_{o}=$ focal length of the objective lens

