Relative Deviation

Relative Deviation = \frac{\text{Mean Deviation}}{\text{Mean Value}} \times 100\%

Prefixes

<table>
<thead>
<tr>
<th>Prefixes</th>
<th>Value</th>
<th>Standard form</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tera</td>
<td>1 000 000 000 000</td>
<td>10^{12} T</td>
<td></td>
</tr>
<tr>
<td>Giga</td>
<td>1 000 000 000</td>
<td>10^9 G</td>
<td></td>
</tr>
<tr>
<td>Mega</td>
<td>1 000 000</td>
<td>10^6 M</td>
<td></td>
</tr>
<tr>
<td>Kilo</td>
<td>1 000</td>
<td>10^3 k</td>
<td></td>
</tr>
<tr>
<td>deci</td>
<td>0.1</td>
<td>10^{-1} d</td>
<td></td>
</tr>
<tr>
<td>centi</td>
<td>0.01</td>
<td>10^{-2} c</td>
<td></td>
</tr>
<tr>
<td>milli</td>
<td>0.001</td>
<td>10^{-3} m</td>
<td></td>
</tr>
<tr>
<td>micro</td>
<td>0.000 001</td>
<td>10^{-6} μ</td>
<td></td>
</tr>
<tr>
<td>nano</td>
<td>0.000 000 001</td>
<td>10^{-9} n</td>
<td></td>
</tr>
<tr>
<td>pico</td>
<td>0.000 000 000 001</td>
<td>10^{-12} p</td>
<td></td>
</tr>
</tbody>
</table>

Units for Area and Volume

1 m = 10^2 cm
1 m^2 = 10^4 cm^2
1 m^3 = 10^6 cm^3

1 cm = 10^{-2} m
1 cm^2 = 10^{-4} m^2
1 cm^3 = 10^{-6} m^3

\[
1 \text{ m} = \frac{1}{100} m
\]

\[
1 \text{ cm}^2 = \frac{1}{10,000} m^2
\]

\[
1 \text{ cm}^3 = \frac{1}{1,000,000} m^3
\]
Average Speed

\[
\text{Average Speed} = \frac{\text{Total Distance}}{\text{Total Time}}
\]

Velocity

\[
v = \frac{s}{t}
\]

where:
- \(v\) = velocity \((\text{ms}^{-1})\)
- \(s\) = displacement \((\text{m})\)
- \(t\) = time \((\text{s})\)

Acceleration

\[
a = \frac{v - u}{t}
\]

where:
- \(a\) = acceleration \((\text{ms}^{-2})\)
- \(v\) = final velocity \((\text{ms}^{-1})\)
- \(u\) = initial velocity \((\text{ms}^{-1})\)
- \(t\) = time for the velocity change \((\text{s})\)

Equation of Linear Motion

1. **Motion with constant velocity**
 \[
v = \frac{s}{t}
\]

2. **Motion with constant acceleration**
 \[
 v = u + at
 \]
 \[
 s = \frac{1}{2} (u + v)t
 \]
 \[
 s = ut + \frac{1}{2} at^2
 \]
 \[
 v^2 = u^2 + 2as
 \]

3. **Using Calculus (In Additional Mathematics Syllabus)**

where:
- \(u\) = initial velocity \((\text{ms}^{-1})\)
- \(v\) = final velocity \((\text{ms}^{-1})\)
- \(a\) = acceleration \((\text{ms}^{-2})\)
- \(s\) = displacement \((\text{m})\)
- \(t\) = time \((\text{s})\)
Ticker Tape

Finding Velocity:

velocity = \frac{s}{\text{number of ticks} \times 0.02\text{s}}

1 tick = 0.02s

Finding Acceleration:

a = \frac{v - u}{t}

a = \text{acceleration} \quad (\text{ms}^2)

v = \text{final velocity} \quad (\text{ms}^{-1})

u = \text{initial velocity} \quad (\text{ms}^{-1})

\text{t} = \text{time for the velocity change} \quad (\text{s})

Graph of Motion

Gradient of a Graph

The gradient 'm' of a line segment between two points and is defined as follows:

Gradient, m = \frac{\Delta y}{\Delta x}

or

m = \frac{\Delta y}{\Delta x}
Displacement-Time Graph

![Displacement-Time Graph]

Gradient = Velocity (ms\(^{-1}\))

Velocity-Time Graph

![Velocity-Time Graph]

Gradient = Acceleration (ms\(^{-2}\))

Area in between the graph and x-axis = Displacement

Momentum

\[p = m \times v \]

- \(p = \text{momentum} \) (kg ms\(^{-1}\))
- \(m = \text{mass} \) (kg)
- \(v = \text{velocity} \) (ms\(^{-1}\))

Principle of Conservation of Momentum

\[m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2 \]

- \(m_1 = \text{mass of object 1} \) (kg)
- \(m_2 = \text{mass of object 2} \) (kg)
- \(u_1 = \text{initial velocity of object 1} \) (ms\(^{-1}\))
- \(u_2 = \text{initial velocity of object 2} \) (ms\(^{-1}\))
- \(v_1 = \text{final velocity of object 1} \) (ms\(^{-1}\))
- \(v_2 = \text{final velocity of object 2} \) (ms\(^{-1}\))

Newton’s Law of Motion

Newton’s First Law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).
Newton’s Second Law

The rate of change of momentum of a body is directly proportional to the resultant force acting on the body and is in the same direction.

\[
F = \frac{mv - mu}{t}
\]

\[
F = ma
\]

Implication

When there is resultant force acting on an object, the object will accelerate (moving faster, moving slower or change direction).

Newton’s Third Law

Newton’s third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.

Impulse

\[
\text{Impulse} = Ft
\]

Impulse \(mv - mu\)

Impulsive Force

\[
F = \frac{mv - mu}{t}
\]

Gravitational Field Strength

\[
g = \frac{F}{m}
\]

Weight

\[
W = Weight \quad (N \text{ or } kgm^2)
\]

\[
m = mass \quad (kg)
\]

\[
g = \text{gravitational field strength/gravitational acceleration} \quad (ms^{-2})
\]
Vertical Motion

- If an object is released from a high position:
 - The initial velocity, \(u = 0 \).
 - The acceleration of the object = gravitational acceleration = 10ms\(^{-2}\) (or 9.81 ms\(^{-2}\)).
 - The displacement of the object when it reaches the ground = the height of the original position, \(h \).

- If an object is launched vertically upward:
 - The velocity at the maximum height, \(v = 0 \).
 - The deceleration of the object = -gravitational acceleration = -10ms\(^{-2}\) (or -9.81 ms\(^{-2}\)).
 - The displacement of the object when it reaches the ground = the height of the original position, \(h \).

Lift

<table>
<thead>
<tr>
<th>In Stationary</th>
<th>When a man standing inside an elevator, there are two forces acting on him.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) His weight, which acting downward.</td>
</tr>
<tr>
<td></td>
<td>(b) Normal reaction (R), acting in the opposite direction of weight.</td>
</tr>
<tr>
<td></td>
<td>The reading of the balance is equal to the normal reaction.</td>
</tr>
</tbody>
</table>

\[R = mg \]
<table>
<thead>
<tr>
<th>Moving Upward with positive acceleration</th>
<th>Moving downward with positive acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = mg + ma$</td>
<td>$R = mg - ma$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moving Upward with constant velocity</th>
<th>Moving downward with constant velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = mg$</td>
<td>$R = mg$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moving Upward with negative acceleration</th>
<th>Moving downward with negative acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = mg - ma$</td>
<td>$R = mg + ma$</td>
</tr>
</tbody>
</table>
Smooth Pulley

With 1 Load

<table>
<thead>
<tr>
<th>Moving with uniform speed:</th>
<th>Stationary:</th>
<th>Accelerating:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1 = T_2)</td>
<td>(T_1 = mg)</td>
<td>(T_1 - mg = ma)</td>
</tr>
</tbody>
</table>

With 2 Loads

Finding Acceleration:
(If \(m_2 > m_1 \))

\[
m_2g - m_1g = (m_1 + m_2)a
\]

Finding Tension:
(If \(m_2 > m_1 \))

\[
T_1 = T_2 \\
T_1 - m_1g = ma \\
m_2g - T_2 = ma
\]

Vector

Vector Addition (Perpendicular Vector)

Magnitude = \(\sqrt{x^2 + y^2} \)

Direction = \(\tan^{-1} \left(\frac{y}{x} \right) \)

Vector Resolution

\[
|x| = p \sin \theta \\
|y| = p \cos \theta
\]
Inclined Plane

Component parallel to the plane \(= \text{mg} \sin \theta \)

Component perpendicular to the plane \(= \text{mg} \cos \theta \)

Forces In Equilibrium

\[
\begin{align*}
T_3 &= mg \\
T_2 \sin \theta &= mg \\
T_2 \cos \theta &= T_1 \\
T_1 \tan \theta &= mg \\
T_3 &= mg \\
T_2 \cos \theta &= T_1 \cos \alpha \\
T_2 \sin \theta + T_1 \sin \alpha &= mg
\end{align*}
\]

Work Done

\[
W = Fx \cos \theta
\]

Where:

- \(W \) = Work Done \((J \text{ or } \text{Nm})\)
- \(F \) = Force \((N \text{ or } \text{kgms}^{-2})\)
- \(x \) = displacement \((m)\)
- \(\theta \) = angle between the force and the direction of motion \((^\circ)\)

When the force and motion are in the same direction.
Energy

Kinetic Energy

\[E_K = \frac{1}{2} mv^2 \]
\[E_K = \text{Kinetic Energy} \quad (J) \]
\[m = \text{mass} \quad (kg) \]
\[v = \text{velocity} \quad (ms^{-1}) \]

Gravitational Potential Energy

\[E_P = mgh \]
\[E_P = \text{Potential Energy} \quad (J) \]
\[m = \text{mass} \quad (kg) \]
\[g = \text{gravitational acceleration} \quad (ms^{-2}) \]
\[h = \text{height} \quad (m) \]

Elastic Potential Energy

\[E_P = \frac{1}{2} kx^2 \]
\[E_P = \text{Potential Energy} \quad (J) \]
\[k = \text{spring constant} \quad (N \ m^{-1}) \]
\[x = \text{extension of spring} \quad (m) \]

\[E_P = \frac{1}{2} Fx \]
\[F = \text{Force} \quad (N) \]

Power and Efficiency

Power

\[P = \frac{W}{t} \]
\[P = \text{power} \quad (W \text{ or } Js^{-1}) \]
\[W = \text{work done} \quad (J \text{ or } Nm) \]
\[E = \text{energy change} \quad (J \text{ or } Nm) \]
\[t = \text{time} \quad (s) \]

Efficiency

\[\text{Efficiency} = \frac{\text{Useful Energy}}{\text{Energy}} \times 100\% \]

Or

\[\text{Efficiency} = \frac{\text{Power Output}}{\text{Power Input}} \times 100\% \]

Hooke’s Law

\[F = kx \]
\[F = \text{Force} \quad (N \text{ or } kgms^{-2}) \]
\[k = \text{spring constant} \quad (N \ m^{-1}) \]
\[x = \text{extension or compression of spring} \quad (m) \]
Force and Pressure

Density

\[\rho = \frac{m}{V} \]

\(\rho \) = density \hspace{1cm} (kg m^{-3})
\(m \) = mass \hspace{1cm} (kg)
\(V \) = volume \hspace{1cm} (m^3)

Pressure

\[P = \frac{F}{A} \]

\(P \) = Pressure \hspace{1cm} (Pa or N m^{-2})
\(A \) = Area of the surface \hspace{1cm} (m^2)
\(F \) = Force acting normally to the surface \hspace{1cm} (N or kgms^{-2})

Liquid Pressure

\[P = h \rho g \]

\(h \) = depth \hspace{1cm} (m)
\(\rho \) = density \hspace{1cm} (kg m^{-3})
\(g \) = gravitational Field Strength \hspace{1cm} (N kg^{-1})

Pressure in Liquid

\[P = P_{atm} + h \rho g \]

\(h \) = depth \hspace{1cm} (m)
\(\rho \) = density \hspace{1cm} (kg m^{-3})
\(g \) = gravitational Field Strength \hspace{1cm} (N kg^{-1})
\(P_{atm} \) = atmospheric Pressure \hspace{1cm} (Pa or N m^{-2})

Gas Pressure

\[P = P_{atm} + h \rho g \]

\(P_{gas} \) = Pressure \hspace{1cm} (Pa or N m^{-2})
\(P_{atm} \) = Atmospheric Pressure \hspace{1cm} (Pa or N m^{-2})
\(g \) = gravitational field strength \hspace{1cm} (N kg^{-1})
Pressure in a Capillary Tube

\[h_1 \rho_1 = h_2 \rho_2 \]

U-tube

Pressure in the capillary tube:

\[P_{\text{gas}} = P_{\text{atm}} + h \rho g \]

\[P_{\text{gas}} = P_{\text{atm}} \]

\[P_{\text{gas}} = P_{\text{atm}} - h \rho g \]

\[P_{\text{gas}} = \text{gas pressure in the capillary tube} \]

\[P_{\text{atm}} = \text{atmospheric pressure} \]

\[h = \text{length of the captured mercury} \]

\[\rho = \text{density of mercury} \]

\[g = \text{gravitational field strength} \]

Barometer

<table>
<thead>
<tr>
<th>Pressure in unit cmHg</th>
<th>Pressure in unit Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a = 0)</td>
<td>(P_a = 0)</td>
</tr>
<tr>
<td>(P_b = 26)</td>
<td>(P_b = 0.26 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_c = 76)</td>
<td>(P_c = 0.76 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_d = 76)</td>
<td>(P_d = 0.76 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_e = 76)</td>
<td>(P_e = 0.76 \times 13600 \times 10)</td>
</tr>
<tr>
<td>(P_f = 84)</td>
<td>(P_f = 0.84 \times 13600 \times 10)</td>
</tr>
</tbody>
</table>

(Density of mercury = 13600 kg m\(^{-3}\))
Pascal’s Principle

\[\frac{F_1}{A_1} = \frac{F_2}{A_2} \]

- \(F_1 = \) Force exerted on the small piston
- \(A_1 = \) area of the small piston
- \(F_2 = \) Force exerted on the big piston
- \(A_2 = \) area of the big piston

Archimedes Principle

- Weight of the object, \(W = \rho \cdot V_1 \cdot g \)
- Upthrust, \(F = \rho \cdot V_2 \cdot g \)

- \(\rho_1 = \) density of wooden block
- \(V_1 = \) volume of the wooden block
- \(\rho_2 = \) density of water
- \(V_2 = \) volume of the displaced water
- \(g = \) gravitational field strength

Density of water > Density of wood

\[\begin{align*}
F &= T + W \\
\rho V g &= T + mg
\end{align*} \]

Density of Iron > Density of water

\[\begin{align*}
T + F &= W \\
\rho V g + T &= mg
\end{align*} \]
Heat Change

\[Q = mc\theta \]

- \(m \): mass (kg)
- \(c \): specific heat capacity (J kg\(^{-1}\) °C\(^{-1}\))
- \(\theta \): temperature change (°)

Electric Heater

Energy Supply, \(E = Pt \)

Energy Supply, \(E = \) Energy Receive, \(Q \)

\[Pt = mc\theta \]

- \(E \): electrical Energy (J or Nm)
- \(P \): Power of the electric heater (W)
- \(t \): time (in second) (s)

Mixing 2 Liquid

Heat Gain by Liquid 1 = Heat Loss by Liquid 2

\[m_1c_1\theta_1 = m_2c_2\theta_2 \]

- \(m_1 \): mass of liquid 1
- \(c_1 \): specific heat capacity of liquid 1
- \(\theta_1 \): temperature change of liquid 1
- \(m_2 \): mass of liquid 2
- \(c_2 \): specific heat capacity of liquid 2
- \(\theta_2 \): temperature change of liquid 2

Specific Latent Heat

\[Q = mL \]

- \(Q \): Heat Change (J or Nm)
- \(m \): mass (kg)
- \(L \): specific latent heat (J kg\(^{-1}\))

Boyle's Law

\[P_1V_1 = P_2V_2 \]

(Requirement: Temperature in constant)

Pressure Law

\[\frac{P_1}{T_1} = \frac{P_2}{T_2} \]
Charles’s Law

\[\frac{V_1}{T_1} = \frac{V_2}{T_2} \]

(Requirement: Pressure is constant)

Universal Gas Law

\[\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]

P = Pressure \((\text{Pa or cmHg})\)

V = Volume \((\text{m}^3 \text{ or cm}^3)\)

T = Temperature \((\text{MUST be in } K(\text{Kelvin}))\)

Light

Refractive Index

Snell’s Law

Real depth/Apparent Depth

\[
\frac{\sin i}{\sin r} = n
\]

\[
\begin{align*}
&n = \text{refractive index} \quad \text{(No unit)} \\
i &= \text{angle of incident} \quad \text{(^o)} \\
r &= \text{angle of reflection} \quad \text{(^o)}
\end{align*}
\]

\[
\frac{D}{d} = n
\]

\[
\begin{align*}
&n = \text{refractive index} \quad \text{(No unit)} \\
&D = \text{real depth} \quad \text{(m or cm...)} \\
&d = \text{apparent depth} \quad \text{(m or cm...)}
\end{align*}
\]

Speed of light

\[
\frac{c}{v} = n
\]

\[
\begin{align*}
&n = \text{refractive index} \quad \text{(No unit)} \\
c &= \text{speed of light in vacuum} \quad \text{(ms^-1)} \\
v &= \text{speed of light in a medium} \quad \text{(like water,}
\]

Total Internal Reflection

\[
\frac{1}{\sin c} = n
\]

\[
\begin{align*}
&n = \text{refractive index} \quad \text{(No unit)} \\
c &= \text{critical angle} \quad \text{(^o)}
\end{align*}
\]
Lens

Power

\[P = \frac{1}{f} \]

\(P = \text{Power} \quad (\text{D}(\text{Diopter})) \)

\(f = \text{focal length} \quad (m) \)

Linear Magnification

\[m = \frac{h_i}{h_o} \quad m = \frac{v}{u} \quad \frac{h_i}{h_o} = \frac{v}{u} \]

\(m = \text{linear magnification} \quad (\text{No unit}) \)

\(u = \text{distance of object} \quad (m \text{ or cm}...) \)

\(v = \text{distance of image} \quad (m \text{ or cm}...) \)

\(h_i = \text{height of image} \quad (m \text{ or cm}...) \)

\(h_o = \text{height of object} \quad (m \text{ or cm}...) \)

Lens Equation

![Lens Equation Diagram]

Conventional symbol

<table>
<thead>
<tr>
<th></th>
<th>positive</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>Real object</td>
<td>Virtual object</td>
</tr>
<tr>
<td>(v)</td>
<td>Real image</td>
<td>Virtual image</td>
</tr>
<tr>
<td>(f)</td>
<td>Convex lens</td>
<td>Concave lens</td>
</tr>
</tbody>
</table>
Astronomical Telescope

Magnification,

\[m = \frac{P_e}{P_o} \]
\[m = \frac{f_o}{f_e} \]

- \(m \) = linear magnification
- \(P_e \) = Power of the eyepiece
- \(P_o \) = Power of the objective lens
- \(f_e \) = focal length of the eyepiece
- \(f_o \) = focal length of the objective lens

Distance between eye lens and objective lens

\[d = f_o + f_e \]

- \(d \) = Distance between eye lens and objective lens
- \(f_e \) = focal length of the eyepiece
- \(f_o \) = focal length of the objective lens

Compound Microscope

Magnification

\[m = m_1 \times m_2 \]
\[= \frac{\text{Height of first image, } I_1}{\text{Height of object}} \times \frac{\text{Height of second image, } I_2}{\text{Height of first image, } I_1} \]
\[= \frac{\text{Height of second image, } I_2}{\text{Height of object, } I_1} \]

- \(m \) = Magnification of the microscope
- \(m_1 \) = Linear magnification of the object lens
- \(m_2 \) = Linear magnification of the eyepiece

Distance in between the two lens

\[d > f_o + f_e \]

- \(d \) = Distance between eye lens and objective lens
- \(f_e \) = focal length of the eyepiece
- \(f_o \) = focal length of the objective lens