www.studyguide.pk Physics Equation List :Form 4 Introduction to Physics

Relative Deviation

Relative Deviation = $\frac{\text{Mean Deviation}}{\text{Mean Value}} \times 100\%$

Prefixes

Prefixes	Value	Standard form	Symbol
Tera	1 000 000 000 000	10 ¹²	Т
Giga	1 000 000 000	109	G
Mega	1 000 000	10^{6}	М
Kilo	1 000	10^{3}	k
deci	0.1	10-1	d
centi	0.01	10 ⁻²	с
milli	0.001	10 ⁻³	m
micro	0.000 001	10 ⁻⁶	μ
nano	0.000 000 001	10-9	n
pico	0.000 000 000 001	10 ⁻¹²	р

Units for Area and Volume

$1 m = 10^2 cm$ $1 m^2 = 10^4 cm^2$	(100 cm) (10,000 cm ²)	1 cm	$= 10^{-2} m$	$(\frac{1}{100}m)$
$1 \text{ m}^3 = 10^6 \text{ cm}^3$	$(1,000,000 \text{ cm}^3)$	$1 \text{ cm}^2 = 10$	$0^{-4} m^2$	$(\frac{1}{10,000}m^2)$

www.studyguide.pk Force and Motion

Average Speed

Average Speed	Total Distance
	Total Time

Velocity

S	v = velocity	(ms^{-1})
$v = \frac{s}{2}$	s = displacement	<i>(m)</i>
· t	t = time	<i>(s)</i>

Acceleration

11 11	a = acceleration	(ms^{-2})
a - v - u	$v = final \ velocity$	(ms^{-1})
a =	$u = initial \ velocity$	(ms^{-1})
t	<i>t</i> = <i>time for the velocity change</i>	<i>(s)</i>

Equation of Linear Motion

Ticker Tape

Finding Velocity:

Finding Acceleration:

Graph of Motion

Gradient of a Graph

The gradient 'm' of a line segment between two points and is defined as follows:

Gradient,
$$m = \frac{\text{Change in y coordinate, } \Delta y}{\text{Change in x coordinate, } \Delta x}$$

or
 $m = \frac{\Delta y}{\Delta x}$

Momentum

$p = m \times v$	p = momentum	$(kg m s^{-1})$
P ···· ·	m = mass	(kg)
	v = velocity	(ms^{-1})

Principle of Conservation of Momentum

$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 u_2$	$+ m_2 v_2$
$m_1 = mass of object 1$	(kg)
$m_2 = mass of object 2$	(kg)
$u_1 = initial velocity of object 1$	(ms^{-1})
$u_2 = initial \ velocity \ of \ object \ 2$	(ms^{-1})
$v_1 = final \ velocity \ of \ object \ 1$	(ms^{-1})
$v_2 = final \ velocity \ of \ object \ 2$	(ms^{-1})

Newton's Law of Motion Newton's First Law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).

Newton's Second Law

$$F\alpha \frac{mv-mu}{t}$$

F = ma

The rate of change of momentum of a body is directly proportional to the resultant force acting on the body and is in the same direction.

 $F = Net Force \qquad (N \text{ or } kgms^{-2})$ $m = mass \qquad (kg)$ $a = acceleration \qquad (ms^{-2})$

Implication

When there is resultant force acting on an object, the object will **accelerate** (moving faster, moving slower or change direction).

Newton's Third Law

Newton's third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.

Impulse

Impulse = Ft	F = force t = time	(N) (s)
Impulse $= mv - mu$	m = mass v = final velocity u = initial velocity	(kg) (ms^{-1}) (ms^{-1})
Impulsive Force		
$F = \frac{mv - mu}{t}$	F = Force t = time m = mass $v = final \ velocity$ $u = initial \ velocity$	$(N \text{ or } kgms^{-2})$ (s) (kg) (ms^{-1}) (ms^{-1})
Gravitational Field Strength		
$g = \frac{F}{m}$	g = gravitational field s F = gravitational force m = mass	$(N kg^{-1}) \\ (N or kgms^{-2}) \\ (kg)$
Weight		
-	W = Weight m = mass (kg) g = gravitational field strengt	2

Vertical Motion

Lift

Smooth Pulley

With 1 Load

		Moving with uniform speed:
	$T_1 = T_2$	$T_1 = mg$
Γ_1 Γ_2	Stationary:	Accelerating:
mg ↓	$T_1 = mg$	$T_1 - mg = ma$

With 2 Loads

	Finding Acceleration:
	$(If m_2 > m_1)$
\bigcirc	$m_2g - m_1g = (m_1 + m_2)a$
T_1	
\Box \uparrow T ₂	Finding Tension:
	$(If m_2 > m_1)$
$m_1g \downarrow \square$	$T_1 = T_2$
↓ m ₂ g	$T_1 - m_1 g = ma$
	$m_2g - T_2 = ma$

Vector

Vector Addition (Perpendicular Vector)

Vector Resolution

Inclined Plane

Component parallel to the plane	= mgsin 0
Component perpendicular to the plane	= mgcos $ heta$

Forces In Equilibrium

When the force and motion are in the same direction.

Work Done(J or Nm)Force(N or kgms⁻²)lisplacement(m)

Energy

Kinetic Energy

_ 1 2	$E_K = Kinetic \ Energy$	(J)
$E_K = \frac{1}{2}mv^2$	m = mass	(kg)
2	v = velocity	(ms^{-1})

Gravitational Potential Energy

$E_{P} = mgh$	$E_P = Potential Energy$	(J)
Ep mgn	m = mass	(kg)
	g = gravitational acceleration	(ms^{-2})
	h = height	(m)

Elastic Potential Energy

$E_P = \frac{1}{2}kx^2$	$E_P = Potential Energy$ k = spring constant	$(J) \\ (N m^{-1})$
$L_P = \frac{1}{2}$	x = spring constant x = extension of spring	(m)
$E_P = \frac{1}{2}Fx$	F = Force	(N)

Power and Efficiency

t

Power

$P = \frac{W}{W}$	P = power	$(W or Js^{-1})$
P = -	$W = work \ done$	(J or Nm)
t	E = energy change	(J or Nm)
$P = \frac{E}{E}$	t = time	(s)

Efficiency

$$Efficiency = \frac{Useful Energy}{Energy} \times 100\%$$

Or

Efficiency = $\frac{\text{Power Output}}{\text{Power Input}} \times 100\%$

Hooke's Law

F = kx	F = Force	$(N \ or \ kgms^{-2})$
$I^{\prime} - \kappa \lambda$	$k = spring \ constant$	$(N m^{-1})$
	extension or compression of spring	<i>(m)</i>

Force and Pressure

Density

$\rho = density$	$(kg m^{-3})$
m = mass	(kg)
V = volume	(m^3)

Pressure

F	P = Pressure	(Pa or	$r N m^{-2}$)
$P = \frac{1}{2}$	A = Area of the surface	(m^2)	
A	$F = Force \ acting \ normally \ to \ the$	surface	$(N \ or \ kgms^{-2})$

Liquid Pressure

$P = h\rho g$	h = depth	<i>(m)</i>
	$\rho = density$	$(kg m^{-3})$
	g = gravitational Field Strength	$(N kg^{-1})$

Pressure in Liquid

$P = P_{atm} + h\rho g$	h = depth	<i>(m)</i>
atm + mp 8	$\rho = density$	$(kg m^{-3})$
	g = gravitational Field Strength	$(N kg^{-1})$
	$P_{atm} = atmospheric Pressure$	$(Pa \text{ or } N m^{-2})$

Gas Pressure

Manometer

$$h_1 \rho_1 = h_2 \rho_2$$

Pressure in a Capillary Tube

$$P_{gas} = gas \ pressure \ in \ the \ capillary \ tube$$
 $(Pa \ or \ N \ m^{-2})$ $P_{atm} = atmospheric \ pressure$ $(Pa \ or \ N \ m^{-2})$ $h = length \ of \ the \ captured \ mercury$ (m) $\rho = density \ of \ mercury$ $(kg \ m^{-3})$ $g = gravitational \ field \ strength$ $(N \ kg^{-1})$

Barometer

(Density of mercury = 13600kgm⁻³)

Pascal's Principle

Archimedes Principle

Heat

Heat Change

$$Q = mc\theta$$

m = mass c = specific heat capacity $\theta = temperature change$ (kg) $(J kg^{-1 o}C^{-1})$ $(^{o})$

Electric Heater	Mixing 2 Liquid
Energy Supply, $E = Pt$ Energy Receive, $Q = mc\theta$	Heat Gain by Liquid 1 = Heat Loss by Liquid 2 $m_1c_1\theta_1 = m_2c_2\theta_2$
Energy Supply, E = Energy Receive, Q	$m_1 = mass \ of \ liquid \ 1$
$Pt = mc\theta$	c_1 = specific heat capacity of liquid 1 θ_1 = temperature change of liquid 1
$E = electrical \ Energy \ (J \ or \ Nm)$ $P = Power \ of \ the \ electric \ heater \ (W)$ $t = time \ (in \ second) \qquad (s)$	$m_2 = mass of liquid 2$ $c_2 = specific heat capacity of liquid 2$ $\theta_2 = temperature change of liquid 2$
Q = Heat Change (J or Nm) m = mass (kg) c = specific heat capacity (J kg-1 °C1) $\theta = temperature change (°)$	

Specific Latent Heat

$$Q = mL$$

Q = Heat Change(J or Nm)m = mass(kg)L = specific latent heat $(J kg^{-1})$

Boyle's Law

$$P_1V_1 = P_2V_2$$

(Requirement: Temperature in constant) Pressure Law

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Charles's Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

(Requirement: Pressure is constant) Universal Gas Law

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

P = Pressure V = Volume T = Temperature (Pa or cmHg) (m³ or cm³) (MUST be in K(Kelvin))

Light

Refractive Index

Snell's Law Real depth/Apparent Depth

Lens

Power

$$P = \frac{1}{f}$$

$$P = Power$$

$$f = focal length$$

$$(D(Diopter))$$

$$(m)$$

Linear Magnification

$m = \frac{h_i}{m}$	$m = \frac{v}{-}$	$\frac{h_i}{2} = \frac{v}{2}$
h_o	U	h_o u

m = linear magnification	(No unit)
u = distance of object	(<i>m or cm</i>)
$v = distance \ of \ image$	(<i>m or cm</i>)
$h_i = heigth \ of \ image$	(<i>m or cm</i>)
$h_o = heigth \ of \ object$	(<i>m or cm</i>)

Lens Equation

Conventional symbol

	1	
u		\overline{f}

	positive negative	
и	Real object	Virtual object
v	Real image	Virtual image
f	Convex lens	Concave lens

Astronomical Telescope

Magnification,

$$m = \frac{P_e}{P_o} \qquad \qquad m = \frac{f_o}{f_e}$$

m = linear magnification $P_e = Power of the eyepiece$ $P_o = Power of the objective lens$ $f_e = focal length of the eyepiece$ $f_o = focal length of the objective lens$

Distance between eye lens and objective lens

 $d = f_o + f_e$

d = Distance between eye lens and objective lens $f_e = focal$ length of the eyepiece $f_o = focal$ length of the objective lens

Compound Microscope

Magnification

$$m = m_1 \times m_2$$

= $\frac{\text{Height of first image , } I_1}{\text{Height of object}} \times \frac{\text{Height of second image, } I_2}{\text{Height of first image , } I_1}$
= $\frac{\text{Height of second image, } I_2}{\text{Height of object, } I_1}$

m = Magnification of the microscope $m_1 = Linear magnification of the object lens$ $m_2 = Linear magnification of the eyepiece$

Distance in between the two lens

$$d > f_o + f_e$$

d = Distance between eye lens and objective lens $f_e = focal$ length of the eyepiece $f_o = focal$ length of the objective lens

