Find an experienced Physics Tutor to go through these formulas? Call us at 6219-1272 or visit http://matchtutor.com.sg to find out more.

O Level Physics Formula Sheet

Measurements	
Base SI Units	Mass SI Unit is Kilogram
Kg, m, s, A, K, mol	(kg).
	Length SI unit is metre (m).
	Time SI Unit is second (s).
	Current SI unit is Ampere
	(A). Temperature SI unit is
	Kelvin (K).
	Amount of substance is
	molar (mol).
Number Prefix	nano (n), micro (µ), milli
$n (10^{-9}), \mu (10^{-6}), m (10^{-3}), c$	(m), centi ©, deci (d), kilo
(10^{-2}) , d (10^{-1}) , K (10^{3}) , M	(K), mega (M).
(10^6)	
_	s in Motion
Average Speed	d=distance,
$\mathbf{s} = \Delta \mathbf{d} / \Delta \mathbf{t}$	t= time
Average Velocity	x = displacement,
$\mathbf{v} = \Delta \mathbf{x}/\Delta \mathbf{t}$	t= time,
slope of distance-time graph	
Acceleration	
$\mathbf{A} = \Delta \mathbf{v} / \Delta \mathbf{t}$	
$\mathbf{v} = \mathbf{u} + \mathbf{at}$	u=initial velocity
$x = ut + \frac{1}{2}at^2$	g =gravitational
$\mathbf{v^2} = \mathbf{u}^2 + 2\mathbf{a}\mathbf{x}$	constant=9.81 m/s ²
$\mathbf{v} = \sqrt{2gh}$	h = height
Newton's La	nws of Motion
Newton's First Law	At equilibrium, the body
$\sum \vec{F} = 0$	continues to stay in its state
<u></u>	of rest or of uniform speed as
	long as no net force and no
	net torque is acting on the
	body.
Newton's Second Law	The acceleration of an object
F= ma	is directly proportional to the
	net force acting on it and
	inversely proportional to its
	mass.

	Ι
Newton's Third Law	For every force object A acts
	on object B, object B will
	exert an equal and opposite
	force on object A.
	nd Torque
Reaction Forces	Acting in opposite direction.
	For example, the ground will
	give a reaction force that is
	equivalent to the man's
	weight.
Force Resolution on	θ is the angle between the
Inclined Plane	horizontal surface and the
$F_{\text{horizontal}} = F \cos \Theta$	inclined plane.
$F_{\text{vertical}} = F \sin \Theta$	
Moment of Force	Moment m is the product of
m = F d	force F and perpendicular
	distance from the pivot d.
Rotational Balance	Condition for body in
Anticlockwise Moment =	rotational balance
Clockwise Moment	
Mass, Weight, De	ensity and Pressure
Weight	Weight w is the product of
	Weight w is the product of mass by gravitational field
Weight $\mathbf{w} = \mathbf{mg}$	Weight w is the product of mass by gravitational field strength
Weight w = mg Density	Weight w is the product of mass by gravitational field strength Density d is given by the
Weight $\mathbf{w} = \mathbf{mg}$	Weight w is the product of mass by gravitational field strength
Weight w = mg Density	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume
Weight $\mathbf{w} = \mathbf{mg}$ Density $d = \frac{m}{V}$ Pressure	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V.
Weight $\mathbf{w} = \mathbf{mg}$ Density $d = \frac{m}{V}$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of
Weight $\mathbf{w} = \mathbf{mg}$ Density $d = \frac{m}{V}$ Pressure	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of
Weight $\mathbf{w} = \mathbf{mg}$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A.
Weight $\mathbf{w} = \text{mg}$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to
Weight $\mathbf{w} = \text{mg}$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h
Weight $\mathbf{w} = \mathbf{mg}$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho \mathbf{gh}$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field
Weight $\mathbf{w} = \text{mg}$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g.
Weight $\mathbf{w} = \mathbf{mg}$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g.
Weight $w = mg$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$ Work Done	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g. de Energy F= force, d= distance
Weight $w = mg$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$ Work Done $W = Fd$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g. d Energy F= force, d= distance θ=angle between Force & distance
Weight $w = mg$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$ Work Done $W = Fd$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g. d Energy F= force, d= distance θ=angle between Force &
Weight $w = mg$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$ Work Done $W = Fd$ Power $P = W/t = Fv$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g. d Energy F= force, d= distance θ=angle between Force & distance
Weight $w = mg$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$ Work Done $W = Fd$ Power $P = W/t = Fv$ Kinetic Energy	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g. d Energy F= force, d= distance θ=angle between Force & distance t=time M=mass
Weight $w = mg$ Density $d = \frac{m}{V}$ Pressure $P = \frac{F}{A}$ Pressure of liquid column $P = \rho gh$ Work Done $W = Fd$ Power $P = W/t = Fv$	Weight w is the product of mass by gravitational field strength Density d is given by the ratio of mass m over volume V. Pressure P is the ratio of force F over area A. Pressure h is proportional to density ρ, height of column h and gravitational field strength g. Id Energy F= force, d= distance θ=angle between Force & distance t=time

Gravitational Energy	g = gravity=9.81 m/s
$E_p = mgh$	h = height
Conservation of Energy	E ₁ =Energy Before,
$E_1 = E_2$	E ₂ =Energy After
1 2	2 23
	Energy cannot be created or
	destroyed, only transformed
	or converted into other
	forms. The total energy of a
	closed system remains the
	same.
Therma	l Energy
Thermal Energy &	Energy is required to
Specific Heat Capacity	increase the temperature of
$\mathbf{E} = \mathbf{m} \mathbf{s} \Delta \mathbf{T}$	matter. m is the mass, s is the
	specific heat capacity and T
	is the temperature.
Thermal Energy	Energy is required to matter
& Latent Heat	to change state. L_{fusion} is the
For melting,	latent heat of fusion while
$E = m L_{fusion}$	
$\mathbf{L} = \mathbf{III} \; \mathbf{L}_{\text{fusion}}$	L _{vaporization} is the latent heat
E 1 T	of vaporization.
For boiling,	m is the mass.
$E = m L_{vaporization}$	
Wa	aves
Wave Velocity	The velocity of a wave v is
$v = f \lambda$	the product of its frequency f
	and wavelength λ.
Period	Period T is the inverse of
$T = \frac{1}{T}$	frequency f.
f	- 1

Prepared by Education Haven

Find an experienced Physics Tutor to go through these formulas? Call us at **6219-1272** or visit http://matchtutor.com.sg to find out more.

Light and Optics	
Law of Reflection	The angle of incident Θ_1 is equal to
$\theta_1 = \theta_2$	the angle of reflection Θ_2 . Both are
1 2	with respect to the perpendicular
	normal of the surface of the mirror.
Snell's Law	The angle of incident Θ_1 and angle
(refraction)	of refraction Θ_2 is with respect to
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	the perpendicular normal of the
	surface between the two medium.
Critical Angle	The critical angle θc is the angle of
$\sin \alpha - n_2$	incidence beyond which total
$\sin \theta_c = \frac{n_2}{n_1}$	internal reflection occurs. The index
1	of refraction for the medium in
	which the incident ray is traveling is
	n_1 , the index of refraction for the
	second medium which the refracted
	ray is traveling is n ₂ .
Index of Refraction	The higher the index of refraction is
$n = \frac{C}{}$	for a medium, the slower is the
	speed of light v in the medium. c is
V The Leave E and the	the speed of light in vacuum.
The Lens Equation	The focal length of the lens f is:
1 _ 1 _ 1	Positive for a converging
$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$	lens
$\alpha_0 \alpha_i j$	Negative for a divergent lens
	The object distance d _o is:
	 Positive if it is on the side
	of the lens from which the
	light is coming
	Negative if on the
	opposite side
	opposite side
	The image distance d _i is:
	Positive if it is on the
	opposite side of the lens
	from which the light is
	coming
	Negative if on the same
	side
Magnification	For an upright image, the
$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$	magnification m is positive and for
$m = \frac{1}{h_o} = -\frac{1}{d_o}$	an inverted image m is negative.

Focal Length of a	For a spherical mirror, the focal
mirror	length is half of the radius of
1	curvature.
f = -r	
1 2	

Electronic Circuits	
$I = \Delta C / \Delta t$	C=Charge t=time
Ohm's Law	
Omin b Zum	V=voltage,
Resistance	R= resistance,
R = V / I	I = current
Resistance of a	$\rho = \text{resistivity}$
wire	L = length of wire
$\mathbf{R} = \rho \mathbf{L}/\mathbf{A}$	A = cross sectional area
Electric Power	Combining ohm's law the power P
P = VI	can be calculated using any
$= V^2/R$	combination of these three equation
$= I^2 R$	variations.
Electrical Energy	Electrical energy can be calculated
$\mathbf{E} = \mathbf{P}\mathbf{t} = \mathbf{V}\mathbf{I}\mathbf{t}$	by the product of power and time.
Root Mean Square	For an AC circuit, the root-mean-
Voltage & Current	square (rms) values can be
& Power	calculated from the peak values.
$V_{rms} = \frac{V_o}{\sqrt{2}}, I_{rms} = \frac{I_o}{\sqrt{2}}$	$P_{rms} = 0.5 P_{max}$
12 12	
$P_{rms} = I_{rms}^2 R = \frac{I_0^2 R}{2} = \frac{1}{2} P$	
Resistance in Series	Resistance in series adds up. Having
$R_{total} = R_1 + R_2 + R_3$	more obstacles along the path for
	current means more resistance.
Resistance in	Resistance in parallel takes the
Parallel	reciprocal. Parallel path for current
$\frac{1}{R_{rest}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}$	to go through means lesser
R_{total} R_1 R_2 R_3	resistance.
Kirchoff's First	Sum of all incoming currents at a
Law	junction is the same as sum of all the
inco min g outgoing	outgoing current at a junction.
$\sum_{inco \min g} I = \sum_{inco} I$	
T71 1 001 C	G C 11 (1 1 1 C
Kirchoff's Second	Sum of all potential difference V in
Law	components of a circuit is equal to
	the electromotive force EMF

$\sum V = EMF$	supplied by the power supply.
Ele	ctromagnetism
$\frac{V_p}{Vs} = \frac{n_p}{n_s}$	The ratio of the voltage V_p and V_s in a transformer is proportional to the ratio of the number of coils n_p and n_s .
Right Hand Grip Rule I is the current. B is the magnetic field.	B
Fleming's Left Hand Rule (Motor Rule) Thumb is for the motion. Index finger is for the magnetic field. Second finger is for the current.	Pield Current
Fleming's Right Hand Rule (Generator) Thumb is for the motion. Index finger is for the magnetic field. Second finger is for the current.	Field

