| Privacy Statement | Site Map \mid Contact Us $|$\begin{tabular}{|c|c|c|c|c|}
\& Search \\

| Home | Papers | Revision | Community | Blog |
| :---: | :---: | :---: | :---: | :---: | \& Games \& Advertise \\

\hline
\end{tabular}

GCSE:
Biology
Chemistry
Commerce
Statistics
Mathematics
A-Level:
Physics
Chemistry
Economics
Mathematics

Home Revision GCSE Chemistry Moles and Empirical Formula

Moles and Empirical Formula

The Mole Concept:

A mole is a unit to count the number of atoms, ions or molecules. They believed that, for example, if one molecule of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ contained 1 carbon atom and 2 oxygen atoms, then the ratio of carbon atoms to oxygen atoms is $1: 2$. So if we wanted to make 100 molecules of carbon dioxide without any excess of the re-actants we will use 200 atoms of oxygen. We got this by:

1	2
Carbon	Oxygen

Amount of carbon atoms $=1 \times 100=100$
Amount of oxygen atoms $=2 \times 100=200$
Chemists use a method similar to that one, but on a larger scale, in industries to prevent wasting money by buying excess substances that will not be used. This is called Avogadro's Constant.

Avogadro's Constant in Solids:

Avogadro was a scientist in the 19th century. He discovered a relationship between a certain amount of substance (atoms, ions or molecules) and the A_{r} (Relative atomic mass) or M_{r} (Relative Molecular Mass) of the substance.

The A_{r} of an element is its Mass Number in the periodic table. For example:

The A_{r} of sodium is $\mathbf{2 3}$

The M_{r} of a compound is the sum of the A_{r} of all the atoms present in one molecule of the compound.

$$
\begin{array}{|l}
\text { The } M_{r} \text { of Carbon dioxide }\left(\mathrm{CO}_{2}\right) \text { is: } \\
\text { The } A_{r} \text { of carbon atom }+\left(2 \times \text { the } A_{r}\right. \text { of oxygen } \\
\text { atom }) \\
12+(2 \times 16)=44 \\
\text { So the } M_{r} \text { of carbon dioxide is } 44
\end{array}
$$

What Avogadro discovered is that if I am holding 6×10^{23} atoms in my hand, its mass is equal to the A_{r} of Iron (Fe). This unit is called Mole.
6×10^{23} is not an equation; it is the number of atoms, ions or molecules in one mole. If you put 6×10^{23} in a calculator, you will find out that this number is $600,000,000,000,000,000,000$.

So if I am holding in my hands $600,000,000,000,000,000,000$ atoms of iron, then I am holding 1 mole of iron.

This is 56 grams heavy because the A_{r} of iron is 56 .

From this we conclude that the mass of one mole of any substance is the A_{r} of it (if it was an element) or the M_{r} of it (if it was a compound). The mass of one mole of any substance is expressed as the molar mass, and the word mole can be abbreviated with mol. The molar mass is always expressed in grams.

Molar mass of carbon is 12 g Molar mass of oxygen is 16 g Molar mass of sodium is 23 g Molar mass of iron is 56 g

The mass of 2 moles of a substance is $2 x\left(A_{r}\right.$ or $\left.M_{r}\right)$, the mass of 3 moles of a substance is $3 x\left(A_{r}\right.$ or $\left.M_{r}\right)$.

```
The mass of 6 moles of water (H2O) is:
```

M_{r} of $\mathrm{H}_{2} \mathrm{O}:(2 \times 1)+16=18$
6 mol of $(\mathrm{H} 2 \mathrm{O})$ is: $6 \times 18=108 \mathrm{~g}$
The mass of 9 moles of hydrated copper sulphate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ is: M_{r} of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}: 64+32+(9 \times 16)+(10 \times 1)=250$
9 mol of CuSO 4.5 H 2 O is: $9 \times 250=2250 \mathrm{~g}$ or 2.25 kg

If we wanted the mass of a sample of a compound, we had to know its M_{r} and the numbers of moles of it we have, and multiply both. We can also find the number of moles in a sample of a compound if we know the mass of the sample and the Mr_{r} of it.

Remember that the Mr_{r} of a substance is how much one mole of it weighs.

How many moles are in 36 grams of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?
Mr_{r} of water: $(2 \times 1)+16=18$
If one mole of water weighs 18 g , then 32 g of water must be:
Mole $=32 \div 18=2 \mathrm{~mol}$
How many moles are there in 4 grams of sodium hydroxide (NaOH) ?
M_{r} of $\mathrm{NaSO}_{4}=23+16+1=40$
Moles $=4 \div 40=0.1 \mathrm{~mol}$

From this we conclude that there is a relation between the mass of a substance, its molar mass, and the number of moles in it.

Mass of sample $=$ Moles \times Molar Mass $\left(A_{r}\right.$ or $\left.M_{r}\right)$ Moles $=$ Mass of sample \div Molar Mass (A_{r} or Mr) Molar Mass (A_{r} or M_{r}) $=$ Mass of sample \div Moles

Avogadro's Constant in Solutions:

Sometimes we need to find concentration of a solution. The unit of concentration can be $\mathrm{g} / \mathrm{dm}^{3}$ or $\mathrm{mol} / \mathrm{dm}^{3}$.
Literally, mol/dm ${ }^{3}$ means how many moles of the solute are dissolved in every dm^{3} of the solvent. So if salt and water solution has a concentration of $3 \mathrm{~mol} / \mathrm{dm}^{3}$, then in every dm^{3} of water, there are 3 mols of salt dissolved. This means that in order for us to find the concentration of a solution, we divide the amount of solute (in moles) in the solution by the total volume of the solution.

Calculate the concentration ($\mathrm{mol} / \mathrm{dm}^{3}$) of a solution containing 4 moles of sulphuric acid and has a volume of $2 \mathrm{dm}^{3}$.

Concentration $=$ Moles of solute \div Volume of solution
Concentration $=4 \div 2=2 \mathrm{~mol} / \mathrm{dm}^{3}$

If we want to find the number of moles dissolved in a solution, we'll need to know both concentration and the volume of the solution.

Find the number of moles of sulphuric acid dissolved in water if the solution has a concentration 2 $\mathrm{mol} / \mathrm{dm}^{3}$ and a volume of $25 \mathrm{dm}^{3}$.

Moles of solute $=$ Concentration \times Volume of solution
Moles of solute $=2 \times 25=50 \mathrm{~mol}$ of sulphuric acid

We can also find the volume of a solution, if we know the concentration and number of moles of solute dissolved; we divide the number of moles by the concentration.

Find the volume of a solution containing 4 moles of sulphuric acid with concentration $2 \mathrm{~mol} / \mathrm{dm}^{3}$.
Volume of solution $=$ Moles of solute \div Concentration
Volume of solution $=4 \div 2=2 \mathrm{dm}^{3}$

From this we conclude that the relation between the volume, concentration and number of moles dissolved in a solution is:

Number of moles $=$ Volume \times Concentration Concentration $=$ Number of moles \div Volume Volume $=$ Number of moles \div Concentration

Avogadro's Constant in Gases:

In gases it is a different story to solutions and solids because weighing a gas is very difficult, and we have no concentration. So in gases, we use volume of the gas to find how many moles are in it.

Scientists have proved that any gas, will have a volume of $24 \mathrm{dm}^{3}$ provided that is it is at room temperature and pressure (R.T.P). That means that all gases at r.t.p occupy $24 \mathrm{dm}^{3}$. We use this theory to find out how many moles are present in some gas if we have its volume, we just divide it by 24 .

How many moles of carbon dioxide are there, if the gas occupied $72 \mathrm{dm}^{3}$?
We know that every 1 mole occupies $24 \mathrm{dm}^{3}$, so $72 \mathrm{dm}^{3}$ are occupied by:
Number of moles $=$ Volume of gas $\div 24$
Number of moles $=72 \div 24=3 \mathrm{~mol}$

We could also find the volume of a gas if we know the number of moles we have in it, we simply multiply it by 24 .

What is volume occupied by nitrogen gas, if 6 moles of it are present?
We know that each mole occupies $24 \mathrm{dm}^{3}$ and that we have 6 moles, so they will occupy:
Volume $=$ Number of moles $\times 24$
Volume $=6 \times 24=144 \mathrm{dm}^{3}$

So we conclude that the relation between the number of moles present in a gas and its volume is:

Volume $=$ Number of moles $\times 24$ Number of moles $=$ Volume \div 24

Reactions and Mole Ratio:

What volume of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ at R.T.P will be produced when 50 g of calcium carbonate react with an excess of hydrochloric acid:

$$
\begin{gathered}
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
1: 2
\end{gathered}
$$

First we write the mole ratio of each reactant and product.
Now we find the number of moles in 50 g of CaCO_{3} :
Number of moles $=$ Mass $\div \mathrm{M}_{\mathrm{r}}$
Number of moles $=50 \div 100=0.5 \mathrm{~mol}$
If the mole ratio of CaCO_{3} to CO_{2} is $1: 1$, then we must also have 0.5 mol of CO_{2}, if we have 0.5 mol of CO_{2}, then we can get the volume produced:
Volume $=$ Number of moles $\times 24$
Volume $=0.5 \times 24=12 \mathrm{dm}^{3}$
Volume of CO_{2} Produced is $12 \mathrm{dm}^{3}$

If all reactants are gases, then the mole ratio is also the volume ratio:

Calculate the volume of methane needed to react with $70 \mathrm{dm}^{3}$ of oxygen:

$$
\begin{array}{cccccc}
\mathrm{CH}_{4} & +\mathrm{CO}_{2} & \rightarrow & \mathrm{CO}_{2} & + & 2 \mathrm{H}_{2} \mathrm{O} \\
1 & : & 2 & & 1 & :
\end{array}
$$

First we write the mole ratio of all reactants and products.
If both reactants are gases, then the mole ratio is also the volume ratio, that means if we have 70 dm^{3} of O_{2} and the ratio of O_{2} to CH_{4} is 2:1, then the volume of CH_{4} is half the volume of O_{2} :

$$
0.5 \times 70=35
$$

Volume of methane needed is $35 \mathrm{dm}^{3}$.

Note: The total mass of the reactants must always equal the total mass of the products.

200 g of pure calcium carbonate decomposes to calcium oxide and carbon dioxide. Calculate the mass of CaO produced and the volume of CO_{2} produced at R.T.P.:

First we write the mole ratio of the reactant and the products.
Mr_{r} of CaCO_{3} is $40+12+(3 \times 16)=100$; moles of $\mathrm{CaCO}_{3}=200 \div 100=2 \mathrm{mols}$
Then we have 2 mols of CaO , because the mole ratio is $1: 1$, mass of $\mathrm{CaO}=2 \times 56=112 \mathrm{~g}$ of CaO is produced.
And if we have 2 mols of CO_{2}, because the ratio is $1: 1$, then the volume of CO_{2} produced is: $2 \times 24=$ 48.
$48 \mathrm{dm}^{3}$ of CO_{2} is produced.

Percentage Purity:

If we have a sample of reactant that is not pure, we can find how pure it is by finding the mass of it that reacted. The impurities are assumed to not interfere with the reaction. Then we divide the mass that reacted by the total mass and multiply it by 100 to get the percentage.

$$
\text { Percentage Purity }=\frac{\text { Pure mass }}{\text { Total mass }} \times 100
$$

When 10 g of impure zinc reacted with dilute sulphuric acid, $2.4 \mathrm{dm}^{3}$ of hydrogen gas were collected at R.T.P. Calculate the percentage purity of zinc:

$$
\begin{array}{ccccc}
\mathrm{Zn} & +\mathrm{H}_{2} \mathrm{SO}_{4} & \rightarrow & \mathrm{ZnSO}_{4} & +\mathbf{H}_{2} \\
1 & : & 1 & & 1
\end{array}: \begin{aligned}
& 1
\end{aligned}
$$

First we have to find the number of moles in any of the chemicals in the reaction to find the number of moles of zinc that reacted. We know that we $2.4 \mathrm{dm}^{3}$ of hydrogen are produced, we can find how many moles this is by:
Number of moles $=$ Volume $\div 24$
Number of moles $=2.4 \div 24=0.1 \mathrm{~mol}$

If we have 0.1 mol of hydrogen and the mole ratio of hydrogen to zinc is $1: 1$ then we must also have 0.1 mol of zinc. Now we have to find how much 0.1 mol of zinc weigh:

Mass $=$ Moles $\times \mathrm{A}_{\mathrm{r}}$
Mass $=0.1 \times 65=6.5 \mathrm{~g}$
If 6.5 g of zinc are present in the sample, then the percentage purity is:
$\%$ Purity $=($ Pure mass \div Total mass) $\times 100$
$\%$ Purity $=(6.5 \div 10) \times 100=65 \%$

Percentage Yield:

Percentage yield is the mass of a substance produced in a reaction as a percentage of the calculated mass. That means that in a reaction, the calculations showed that the 50 grams of calcium oxide will be produced, but practically, only 45 grams were produced then the percentage yield is 45 divided by 50 multiplied by 100 , which is 90% :

$$
\text { Percentage yield }=\frac{\text { Mass produced }}{\text { Mass predicted }} \times 100
$$

Heating 12.4 g of Copper (II) Carbonate Produced only 7 g of Copper (II) Oxide. Find the percentage yield of Copper (II) Oxide:

$$
\begin{array}{ccccc}
\mathrm{CuCO}_{3} & \rightarrow & \mathrm{CuO} & +\mathrm{CO}_{2} \\
1 & 1 & : & 1
\end{array}
$$

First we calculate the mass of CuO that is supposed to be produced: We write the mole ratio of the reactant and the products.

Mr of CuCO 3 is 124 we have 12.4 g so the number of moles is $12.4 \div 124=0.1$; if the ratio of CuCO_{3} to CuO is $1: 1$, then we must also have 0.1 mol of CuO , the Mr_{r} of CuO is 80 . Then the mass of CuO must be $0.1 \times 80=8 \mathrm{~g}$. We actually got 7 g so the percentage yield is:

Percentage yield $=($ Mass produced \div Mass predicted) $\times 100$
Percentage yield $=(7 \div 8) \times 100=87.5 \%$
So the percentage yield is 87.5%

Composition Percentage of Elements in Compounds:

This is a way to find the percentage of an element in a whole compound. For example, if we have the compound CaCO_{3}, we can find the percentage of any of the elements in it by the following rule:

Composition percentage $=\frac{\text { Number of atoms of the element in a molecule } \times A_{r}}{M_{r} \text { of the compound }} \times 100$

Find the percentage of nitrogen in the following compounds:

1. Ammonium Nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$:
2. Ammonium Sulphate, $\left(\mathrm{NH}_{4}\right) 2 \mathrm{SO}_{4}$:
3. Urea, $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$:

Answers:

1. $[(14 \times 2) \div 80] \times 100=35 \%$
2. $[(14 \times 2) \div 132] \times 100=21.21 \%$
3. $[(2 \times 14) \div 60] \times 100=46.6 \%$

The Empirical Formula:

The molecular formula shows the actual number of atoms of each element in a compound, but the empirical formula is a formula that shows the simplest ratio of atoms present in a compound. For example if a compound has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}$, its empirical formula would be $\left(\mathrm{CH}_{2}\right) \mathrm{n}, \mathrm{n}$ is the number to multiply by to get the molecular formula, which is 4 in this case, the 8 is divided by the 4 to give the simplest ratio between them. The empirical formula is widely used with hydrocarbons which are compounds containing hydrogen and carbon, and carbohydrates, which are compounds containing carbon and water.

A carbohydrate has 40% of its mass carbon， 6.66% hydrogen．Find the compound＇s empirical and molecular formula given that is M_{r} is 180：

We assume that we＇ve got 100 g of this carbohydrate．Then we have 40 g of carbon and 6.66 g of hydrogen，we can now find oxygen＇s mass and the number of moles we have of each element，thus we can get the simplest ratio between them and get the empirical formula．

	Carbon	Hydrogen	Oxygen
Mass \％	40	6.66	$100-46.6=53.34$
$\mathrm{~A}_{\mathrm{r}}$	12	1	16
Moles	$(40 \div 12)=3.33$	$(6.66 \div 1)=6.66$	$(53.34 \div 16)=3.33$
Simple ratio	1	2	1
Empirical formula	C	H_{2}	O

Emperical formula： $\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{N}=$ Molecular $\mathrm{M}_{\mathrm{r}} \div$ Empirical M_{r}
$N=180 \div 30=6$
Molecular Formula $=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

SiteMap	Papers	Papers（Cont＇d）	GCSE Revision	A－Level Revision
Home	ACCA	GAMSAT	Biology	Physics
Papers	AQA	GED	Chemistry	Chemistry
Revision	CIE	GMAT	Commerce	Economics
Community	｜Int＇l AS and A Levels	GRE	Statistics	Accounting
｜Search Forums	｜Cambridge IGCSE	IB	Accountings	Biology
｜What＇s new？	｜Cambridge O Level	｜Primary Years	Business Studies	Business Studies
｜Registered Members	｜Camb．Checkpoint	｜Middle Years	Economics	English
｜Current Visitors	｜Misc Documents	｜Diploma Programme	English	Geography
｜Recent Activity	｜Timtables（Zone 2－6）	IELTS	Geography	Mathematics
Blog	CLEP	MCAT	History	
Advertise	DSST	OCR	ICT	Translate
Contribute	ECDL	SAT	Islamiyat	中文
Games	Edexcel	｜SAT I	Mathematics	Español
Privacy Statement	｜A Level	｜SAT II	Physics	한국어
Site Map	｜O Level	WJEC		Other
Contact Us				

