GCE ‘O’ LEVEL MATHEMATICS

Scheme of Assessment

Paper	Duration	Desariptions	Marks	Weight
4016/1	2 h	There will be about 25 short answer question fundamental skills and concepts. ALL questions must be calculator is allowed	80	50\%
6/2	2.5 h	There will be 10 to 11 questions of varying marks and lengths, higher order thinking skills. ALL questions use of calculator is allowed.	100	50\%

Assessment Notes
. Omission of essential working will result in loss of marks. For Paper 1 , candidates are expected to show all their working and answers in the spacese provided below that
question For Paper 2 , wititng and graph papers will be provided.
Candidates are expected to cover the whole syllabus. Each paper may contain nuestions on any parto of the syllabas
and will not necessarily be restricted to a single topic. Pent necssarly e restricted od a single topic. Relerant mathematical formulae will be provided for
both
Paner 1 I and both Paper 1 and Paper 2. . Candidates should be familiar
with formulae that ane not provided in the formulae list. The use of approved scientific calculators is allowed for both Paper 1 and Paper 2 . Candidates should be familiar with the use of their calculators. Prior to the examination, they should also ensure that the
calculators are in wovine
calculatoros are in working condition.
Candidates are expected to provide their own
geometrical instruments and other neeessary stationary Seometicara instruments and 0 .
for both P Pper 1 and Paper 2.
For non-exact answers and unless otherwise stated within aquestion, the final ansser should be rounded off to three eignificican figures. Throughout the working subsequent parts of the question, four sigifificant figures
 will be penalized. Angles
off to one decimal place.
. Unless the question requires the answers in terms of π used.

Sample questions and solution

$O A B$ is a sector of a circle, centre 0, radius $8 \mathrm{cm}. \triangle A O B$
is an equilateral triangle and $A O B=1.2$ radians. Taking π to be 3.142 , calculute
(a) the perimeter
(a) the perimeter
(b) the area of the
the area of the
shaded region.

$\frac{\text { Osserve that the angle is siven in radians. Therefore, }}{\text { sen }}$

(a) Perimeter of the shaded region $\begin{aligned} & =\text { arc ength } \\ & =r \theta+8 \\ & =r\end{aligned}+$ chord length A $=8(1.2)+8$
$=17.6 \mathrm{~cm}$
(b) Area of shaded re

- Area of $\triangle A O B \quad$ Area of sector $O A B$ $=\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta$
$=\frac{1}{2}(8)^{2}(1.2-\sin 1.2)$
$=8.57 \mathrm{~cm}^{2}$
$\frac{\text { Note that the formulue Area of sector } O A B \text { and } A \text { rea of }}{A O P}$ AOs we provided in the formulae l ist
The diagram below shows the line segment $\mathrm{AB}=7 \mathrm{~cm}$.
Construct a triangle ABC with sides $\mathrm{BC}=5 \mathrm{~cm}$ and AC ${ }_{8.5 \mathrm{~cm} \text {. }}$
In the same diagram, construct,
(a) the perpendicular bisector of line AC, (b) the angle bisector of $C \widehat{A B}$

For construction questions, all ares must b

(a)
(a) In the following figure, $\mathrm{PQ}=\mathrm{PS}$ and $\mathrm{QR}=\mathrm{ST}$. State, with reasons, the pair
of conguent $\underset{\substack{\text { citcongruent } \\ \text { triangles. }}}{\text { [2] }}$
(b) (i) In the figure below, $B \hat{A} C=D E \hat{R} C$. State which pair of triaingles is
similar stating you simiar, statenny
reasons cleary.

(c) (ii) Calculate the length of BE To show or prove that any two triangles are congruent. (3)RHS or (4) AAS. Write 3 relevant statements, with reasons, to support the proof.
(a) $\mathrm{PQ}=\mathrm{PS}($ given $)$
$\mathrm{PR}=\mathrm{PT}($ since $\mathrm{QR}=\mathrm{ST})$
$R \hat{P} S=T \hat{P} Q($ common angle $)$
The easiest way to show or rrove that two triangles are
similar is to show that their 2 corresponding angles are equal. Write 2 relevant statements, with reasons, to support $\frac{\text { the proof. Ensure that the correct vertices of the two }}{\text { trianoles are written in the fict }}$ triangles are written in the final statement.
$\begin{aligned} & \text { (b) } \text { (i) } \angle \mathrm{BAC} \\ & \angle \mathrm{BCA}=\angle \mathrm{DECE} \text { (given) } \\ & \text { (common }\end{aligned}$
$\angle \mathrm{BCA}=\angle \mathrm{DCE}$ (common angle)
Hence, $\triangle B C A$ is similar to $\triangle D C E$
From the statement " $\triangle B C A$ is similar to $\triangle D C E$ ", the ratio of $\frac{\text { from the statemen }}{\text { the corresponding sides of } f \text { th similar ot triangles can be }}$ be corresponding sides For an equation in the and us
diagram carefully and decide which 2 pairs can be used to solve the problem.
(ii) $\frac{B C}{D C}=\frac{C A}{C B}$
$\frac{16}{8}=\frac{12}{C E}$
${ }^{6}=6=6 \mathrm{~cm}$.
$B=16-6=10 \mathrm{~cm}$
4. Ali and Mazlan have been receiving the Edusave Scholarships awards since they were in Secondary One year were given at the end of each academic year. (a) Ali deposited all $\$ 500$ in his account annually. This account paia simple interest at the rate of 1.55% pe year. Calculate the total amount in his account at
he end of JC2.
(b) Mazlan also deposited all $\$ 500$ in his account annually. This account paid compound interest at
the rate of 1.5% per year. Calculate how much more or less money there was in his account after UC2 than there was in Airs account. The formula to compute simple interest it I (PRout $)$ where P is the principal amount or initial a mount
deposited, R is the rate in percentage and Tis the term in
dears. This formula will not be provided in the fom years. This formula will not be provided in the formulae
(a) $\begin{gathered}\text { Interest earned at the end of } \mathrm{JC} 2 \\ =\$ 46.50\end{gathered}$
$=\$ 46.50$
Total amount in acc
(b) Interest earned at the end of JC2 $=500\left(1+\frac{1.5}{100}\right)^{6}$

Difference in interest earned $=546.72-546.50$
Mazlan will have $\$ 0.22$ more than Ali
The formula to compute compound interest will be provided in the formulae lis.

A man observes that, in the level field $A B C D, B$ is due east of A, C is on a bearing of 340° from $B, A B=60 \mathrm{~m}$ an Calculate
(a) the length $A C$,
(c) the bearing of D fron $[3]$
$[3]$
[2]
A bird is hovering at a point vertically above C
(d) Calculate the angle of elevation
(d) Calculate the
bird from point B.

The whole question must be answered with calculator set to $\frac{\text { DEGREE mode as the angles and bearings are given in }}{\text { degrees. }}$ degrees.
(a) $C \hat{B A} A=340^{\circ}-270^{\circ}$
$A C^{2}=96^{2}+60^{2}-2(96)(60) \cos 70$
$A C=94.212$ $\begin{aligned} A C^{\prime} & =96^{2}+60 \\ C & =94.212 \\ & =94.2 \mathrm{~m}\end{aligned}$
It is encour raged to write the answer to 5 significant figure before rounding off the final answer to 3 significant
figures. Use this value (5 significant value) in the subsequent parts if required.
(b) $\frac{\sin C \hat{A} B}{96}=\frac{\sin 70^{\circ}}{94.212}$
$\begin{aligned} C \hat{A} B & =73.24 \\ & =73.2^{\circ}(1 \text { dec place })\end{aligned}$
Bearing is measured in aclockwise direction from the specified North line. It is written as a three-digit number.
(c) $\begin{aligned} N \hat{A} D & =60^{\circ}-\left(90^{\circ}-73.24^{\circ}\right) \\ & =43.24^{\circ}\end{aligned}$
$\begin{aligned} &=43.24 \\ & \text { Bearing of } \mathrm{D} \text { from } \mathrm{A}=360^{\circ}-43.24 \\ &=316.8^{\circ}\end{aligned}$
For questions involving angle of elevation or depression, $\frac{\text { For }}{}$ draw a right angle triangle with all given information. Apply trigonometric ratio to solve for unknowns.
d) Let the angle of
$\tan x=\frac{40}{26}$
$x=22.6 \mathrm{~m}$
6.

$O A B C$ is a parallelogram. M is a midpoint of $A B$ and N is
a midpoint of $C B . O A=2 p$ and $O C=2 \boldsymbol{q}$.
(a) Express in terms of p and $/$ or \boldsymbol{q}
(i) $\overrightarrow{C N}$,
(ii) $\overrightarrow{O M}$,
(iii) $\overrightarrow{C M}$.
$[1]$
$[1]$
The point X divides $C M$ in the ratio 2 :3
(i) $\overrightarrow{C X}$,
(ii) $\overrightarrow{O X}$

Write down the ratio $O X: X N$
(d) Find the numerical value of
(i) $\frac{\text { Area of OCM }}{\text { Area of OAM }}$
(ii) $\frac{\text { Area of OCX }}{\text { Area of CNX }}$

Use geometrical properties of parallelograms to determine
(a) (i) $\begin{aligned} & C \vec{N}=p \\ & \text { (ii) } A \vec{M}=q\end{aligned}$
$\begin{aligned} \hat{M} & =2 p \\ \text { (iii) } \vec{M} & =2 p\end{aligned}$
(b) (i) $\overrightarrow{C X}=\frac{2}{5}(2 p-q)$
(ii) $\begin{aligned} 0 \hat{X} & =\frac{2 q}{2}+\frac{4}{5} p-\frac{2}{5} q \\ & =\frac{4}{5} p+\frac{5}{5}, \\ & =\frac{1}{5} q\end{aligned}$
$=\frac{4}{5}(p+2 \underline{q})$
(iii) $O \hat{N}=(p+2 q)$
$\left\langle\bar{N}=\frac{1}{2}(p+2 q)\right.$
$x N=\hat{5}(p+2 q)$
$0 x: x N=4: 1$
 $\frac{\text { treaf ocil }}{\text { trea } \mathrm{fOAM}}=\frac{1}{2}$

(ii) Both triangles share the same height, C.

Area of 0 CX
(a) Balls are drawn at random from a bag containing 6
green balls and 4 blue balls Fin reen balls and 4 blue balls. Find the probability
that
(i) the first ball drawn will be blue,
(ii) the fir the first wo balls drawn, withou replacem
colours.
(b) Another bag contains w green and b blue balls. The probability of drawing a blue ball at random is $\frac{3}{7}$. (i) Find a relation between w and b. (ii) It is also given that when two balls
drawn, without replacement, the probability that both balls are blue is $\frac{6}{35}$. Hence show that
$5(b-1)=2(w+b-1)$
(a) (i) $\mathrm{P}($ blue ball drawn $)=\frac{4}{10}$
(ii) P (different colours or green and blue)
(b) (i) $\frac{3}{7}=\frac{b}{b+w}$
$3 b+w$
$3 w=4 b$
$3 w=7$
$w=\frac{4}{3} b$
(ii) Without replacement
$\frac{b}{(b+w)} \times \frac{(b-1)}{(b+w-1)}=\frac{6}{35}$ $\frac{3}{7} \times \frac{(b-1)}{(b+w-1)}=\frac{6}{86}$
$\frac{(b-1)}{(b+w-1)}=\frac{2}{5}$ $5(b-1)$
(shown)
8. In the figure, 0 is the centre of the circle. If $A B$ is
(a) $\angle \mathrm{ACB}$,
(b) $\angle \mathrm{ADB}$,
(c) $\angle \mathrm{CAB}$

Candidates need to be familiar with circle properties and apply them accordingly. Relate knowledge with the beside the statement you write. Use the amount of thes used gauge your solutims 1 mark solution shount of marks to more than 1 to 3 lines,
(b) $\angle \mathrm{ACB}=62^{\circ}(\angle$ at centre $=2 \angle$ at circumference $)$
$\begin{aligned} & \\ & =118^{\circ}\end{aligned}$
(c) $\angle \mathrm{OBA}=180^{\circ}-124^{\circ}($ isos $\Delta)$
$\begin{aligned} & =28^{\circ} \\ \angle \mathrm{COB} & =28^{\circ}(\text { alt } \angle s) \\ \angle \mathrm{CAB} & =28^{\circ} \div 2(\angle a t \\ & =14^{\circ}\end{aligned}$
A manufacturing plant assemble
produces 500 printers in x days.
(a) Write down an expression, in terms of x, for the
number of printers produced per day. The rate of production is increased so that 500
printers are now produced in one day less. Writ printers are now produced in one day less. Write
printers produced in this case.
(c) If the difference between these daily rates of
production is 60 , form an equation in x and sh production is 60 , form an equation in x and show
reduces to $3 x^{2}-3 x-25=0$.
(d) Solve the equation $3 x^{2}-3 x-25=0$. Explain why
(e) Hence, find the oumber of printers originally produced per day.
(a) $\frac{500}{x}$
(b) $\frac{500}{(x-1)}$
(c) $\frac{500}{(x-1)}-\frac{500}{x}=60$ Multiply throughout by the LCM $x(x-1)$
$500 x-500(x-1)=60 x(x-1)$
$500=60 x^{2}-60 x$
$3 x^{2}-3 x-25=0$ (shown)
If you are unable to show the equation in part (c), proceed
to sove the remaining part of the question. Do not leave the remaining parts blank.
(d) $x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(3)(-25)}}{2(3)}$
$=3.4297$ or -2.4297

cannot be a negative value.
The equation above will NOT be provided in the formula List. Ensurure correct substitittion of values.

The diagram represents the speed-time graph of a moving
(a) Calculate the speed of the object when $t=4$. [15 seconds.
Give that the rate at which the object slows down
atter $t=15$ is equal to half the rate at which it after $t=15$ is equal to half the rate at which it
accelerates during the first 6 seconds, calculate the
time at which it stops.
ply concept of similar triangles to answer part (a)
(a) Let the speed when $\mathrm{t}=4$ be
$\frac{40-16}{v-16}=\frac{6}{4}$
$v=32 \mathrm{~m} / \mathrm{s}$
graph.
(b) Distance traveled in the first $15 \mathrm{~s}=\frac{1}{2}(16+40) \times 6+(40 \times 9)$

Acceleration is obtained from the gradient of the speed
(c) Acceleration from 0 to $6 \mathrm{~s}=\frac{40-16}{6}$

Acceleration after $15 \mathrm{~s}=-2 \mathrm{~m} / \mathrm{s}^{2}$
$\frac{40-0}{15-t}=-2$
$15-t$
radius 5 cm , a cylinder of radius 5 cm and height $x \mathrm{~cm}$,
adius 5 cm , a cylinder of radius 5 cm and height $x \mathrm{cr}$,
and a right circular cone of radius 5 cm and height 12 cm , joined together.
. Find the volume of the cone, leaving your answer in terms of π.
Show that the height, x, of the cylinder is $4 \frac{2}{3}$ c

The solid is melted completely
prism as shown in Diagram 2
as as shown in iagram 2 . 10 form
riangle with sides $P R=P S=5 \mathrm{~cm}$. Taking π to be
(c) the vertical height, h
(d) the ength $P Q$ of the prism,
(e) the total surface area of the prism.
$[2]$
$[2]$
$[3]$
Formula for the volume of cone and sphere is provided in nswers in terms of π.
(a) Volume of cone $=\frac{1}{3} \pi(5)^{2} 12$
$=100 \pi \mathrm{~cm}^{3}$
$\pi(5)^{2} x+\frac{2}{3} \pi(5)^{3}=200 \pi$
$\pi(5)^{2} x+\frac{2}{3} \pi(5)^{3}=200 \pi$
$x=\frac{200 \pi-\frac{2}{3} \pi(5)^{3}}{\pi(5)^{2}}$
$x=4 \frac{2}{3} \mathrm{~cm}$
(c) $R S=\sqrt{5^{2}+5^{2}}$
$=7.071 \mathrm{~cm}$
Area of a right-angled tria
$\frac{1}{2}(5 \times 5)=\frac{1}{2}(7.071 \times h)$
$h=3.536=3.54 \mathrm{~cm}(3$ sig. fig $)$
(d) Volume of prism $=300 \pi \mathrm{~cm}^{3}$
$300(3.142)=\frac{1}{2}(5)^{2} P Q$
$P Q=7.308$
$\begin{aligned} P Q & =75.398 \\ & =75.4 \mathrm{~cm}\end{aligned}$
e) Total surface area of prism $=$
$2\left(\frac{1}{2}(5)^{2}\right)+2(5 \times 75.398)+(7.071 \times 75.398)$ $=25+75.398+533.139$
12. (a) The Latiff family went to Beijing to watch the 2008 Olympics
Mr Latiff bought 5000 CNY ($\left.{ }^{(}\right)$at a rate of $1=0.1885$ SGD (S\$) on 6 August. How much did
this cost in SGD?
The family returned home with $¥ 298$ and changed this back into SGD. They received S $\$ 56.30$. Calculate how many SGD they received for each
CNY , giving your answer correct to 4 significant figures.
Ms Letiff bought a bag for $¥ 99$. The same bag costs S $\$ 77.50$ in Singapore. Calculate, as a percentage of the costin singapore, how much less
) Mrs Latiff bought a few dresses that cost $¥ 1000$ She paid $¥ 100$ in cash and used her credit card to
pay for the remaining amount. When she returne home her credit card bill for this item was home, her creadit card diil ror this item was
S 184.74 . Calculate the rate of exchange, in to SGD, giving your answer correct to 4 significant
figures. The plane took 5 hours 15 minutes to return to
Singapore. The return journey was 3801 km
Calculate the average speed of the plane in metre
(a) (i) It cost $5000 \times 0.1885=\$ \$ 942.50$
(ii) They received $(56.30 \div 298)=0.1889$
$\$ 0.1889$ for each CNY $\frac{37.50-18.6615}{3750} \times 100 \%=50.236 \% \approx 50.2 \%$
(v) $¥ 1=184.74 \div 900=0.20526 \times \mathrm{S} \$ 0.2053$
(v) Average speed $=\frac{3801 \times 10}{315 \times 60}$

$=201.1 \approx 201 \mathrm{~ms}$

of graph paper.

he variables x and y are connected by the equation $y=x+\frac{15}{x}-6$. Some corresponding values of x and y, | x | 1 | 1.5 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 10 | a | 3.5 | 2 | 1.8 | 2 | b | 3.1 | 3.9 |

(a) Calculate the value of a and of b.

Using a scale of 2 cm to represent 1 unit, draw a
horizontal axis for. $0 \leq x \leq 8$. Using a scale of 2 cm to represent 1 unit, draw a vertical axis for $0 \leq x \leq 10$. On these axes, draw the graph 0 $y=x+\frac{15}{x}-6$.
Using your graph, find
(i) value(s) of x when $y=$
(i) value(s) of x when $y=8$,
(ii) range of falues of x when $x+\frac{15}{x}-6>4$
[1]
[2]
(d) Use your graph to find the value of x when the
gradient of the curve $y=x+\frac{1}{x}-6$ is equal to zero.
By drawin graph at $x=2$.
As specified in the instruction above, the whole of this paper: All necessary working should be done on either sid of the graph paper. Follow instructions closely and plan cere to draw the axes. Ensure axes are labeled and scale curve and lines clearly.

(c) (i) $x=1.25(1.2 \sim 1.3)$ graph of $y=x+\frac{15}{x}-6$ is greater than or diagrammatically, above the line $y=4$.
$x<1.8$ or $x>8.25[(1.75 \sim 1.85),(8.2 \sim 8.3)$ respectively.
(d) Gradient is zero at the minimum or the lowest

Tangent must be sufficiently long and should touch the graph, as best as possible, at one point $\frac{\text { only. Obtain coordinates of the endpoints and use }}{\text { the gradient formula to calculate the aradient at }}$ Gradin,

