
(a) Construct triangle $A B C$ accurately, with $A C=10 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$.

The line $A B$ has been drawn for you.
(b) (i) Using a straight edge and compasses only, construct the bisector of angle A.
(ii) The bisector of angle A meets $B C$ at X.

Measure the length of $B X$.

$$
\text { Answer(b)(ii) } B X=
$$

cm
(c) (i) Using a straight edge and compasses only, construct the perpendicular bisector of $A B$.
(ii) The perpendicular bisector of $A B$ meets $A C$ at Y and $A X$ at Z.

Measure angle CYZ.
Answer(c)(ii) Angle CYZ=[1]
(d) Shade the region inside triangle $A B C$ which is

- nearer to $A B$ than to $A C$
and
- nearer to B than to A.

9 On the scale drawing opposite, point A is a port.
B and C are two buoys in the sea and L is a lighthouse.
The scale is $1 \mathrm{~cm}=3 \mathrm{~km}$.
(a) A boat leaves port A and follows a straight line course that bisects angle $B A C$.

Using a straight edge and compasses only, construct the bisector of angle $B A C$ on the scale drawing.
(b) When the boat reaches a point that is equidistant from B and from C, it changes course. It then follows a course that is equidistant from B and from C.
(i) Using a straight edge and compasses only, construct the locus of points that are equidistant from B and from C.
Mark the point P where the boat changes course.
(ii) Measure the distance $A P$ in centimetres.

> Answer(b)(ii) cm [1]
(iii) Work out the actual distance $A P$.

> Answer(b)(iii) km [1]
(iv) Measure the obtuse angle between the directions of the two courses.

> Answer(b)(iv)
(c) Boats must be more than 9 kilometres from the lighthouse, L.
(i) Construct the locus of points that are 9 kilometres from L.
(ii) Mark the point R where the course of the boat meets this locus.

Work out the actual straight line distance, $A R$, in kilometres.

Answer(c)(ii)
km [1]

The line $A B$ is drawn above.
Parts (i), (iii), and (v) must be completed using a ruler and compasses only. All construction arcs must be clearly shown.
(i) Construct triangle $A B C$ with $A C=7 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$.
(ii) Measure angle $B A C$.

> Answer(a)(ii) Angle BAC=
(iii) Construct the bisector of angle $A B C$.
(iv) The bisector of angle $A B C$ meets $A C$ at T.

Measure the length of $A T$.

$$
\text { Answer(a)(iv) } A T=\text {................................... cm [1] }
$$

(v) Construct the perpendicular bisector of the line $B C$.
(vi) Shade the region that is
and - nearer to B than to C - nearer to $B C$ than to $A B$.

$A(1,3), B(4,1)$ and $C(6,4)$ are shown on the diagram.
(a) Using a straight edge and compasses only, construct the angle bisector of angle $A B C$.
(b) Work out the equation of the line $B C$.
Answer(b)
(c) $A B C$ forms a right-angled isosceles triangle of area $6.5 \mathrm{~cm}^{2}$.

Calculate the length of $A B$.

The point A lies on the circle centre O, radius 5 cm .
(a) Using a straight edge and compasses only, construct the perpendicular bisector of the line $O A$.
(b) The perpendicular bisector meets the circle at the points C and D.

Measure and write down the size of the angle $A O D$.

The line $A B$ is drawn above.

Parts (i), (iii), and (v) must be completed using a ruler and compasses only. All construction ares must be clearly shown.
(i) Construct triangle $A B C$ with $A C=7 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$.
(ii) Measure angle $B A C$.

$$
\begin{equation*}
\text { Answer(a)(ii) Angle } B A C= \tag{1}
\end{equation*}
$$

(iii) Construct the bisector of angle $A B C$.
(iv) The bisector of angle $A B C$ meets $A C$ at T.

Measure the length of $A T$.

$$
\text { Answer(a)(iv) } A T=\text {..................................... cm [1] }
$$

(v) Construct the perpendicular bisector of the line $B C$.
(vi) Shade the region that is
and

- nearer to B than to C
- nearer to $B C$ than to $A B$.

NOT TO
SCALE
$O A B C$ is a field.
A is 88 metres due North of O.
B is 146 metres from O on a bearing of 040°.
C is equidistant from A and from B. The bearing of C from O is 098°.
(a) Using a scale of 1 centimetre to represent 10 metres, make an accurate scale drawing of the field $O A B C$, by
(i) constructing the triangle $O A B$,
(ii) drawing the locus of points equidistant from A and from B,
(iii) completing the scale diagram of $O A B C$.
(b) Use your scale drawing to write down
(i) the distance $O C$ correct to the nearest metre,
(ii) the size of angle $O A B$ correct to the nearest degree.
(c) Find the bearing of A from B.
(d) A donkey in the field is not more than 40 metres from C and is closer to B than to A. Shade the area where the donkey could be and label it D.
(e) A horse in the field is not more than 20 metres from the side $A B$ and is closer to A than to B. Shade the area where the horse could be and label it H.

The diagram is a scale drawing of a field. The actual length of the side $A B$ is 100 metres.

(a) Write the scale of the drawing in the form $1: n$, where n is an integer.

Answer (a) 1:
(b) In this part use a straight edge and compasses only. Leave in your construction lines.
(i) A tree in the field is equidistant from the point A and the point D. Construct the line on which the tree stands.
(ii) The tree is also equidistant from the sides $B C$ and $C D$. After constructing another line, mark the position of the tree and label it T.

The diagram, drawn to a scale of 1 cm to 1 m , shows a garden made up of a path and some grass. A goat is attached to a post, at the point P, by a rope of length 4 m .
(a) Draw the locus of all the points in the garden that the goat can reach when the rope is tight.
(b) Calculate the area of the grass that the goat can eat.

In this question show clearly all your construction arcs.
(a) Using a straight edge and compasses only, construct on the diagram above,
(i) the perpendicular bisector of $B D$,
(ii) the bisector of angle $C D A$.
(b) Shade the region, inside the quadrilateral, which is nearer to D than B and nearer to $D C$ than $D A$.

NOT TO
SCALE

The diagram shows a trapezium $A B C D$.
$A B=12 \mathrm{~cm}, D C=9 \mathrm{~cm}$ and the perpendicular distance between these parallel sides is 7 cm .
$A D=B C$.
(a) Approximately halfway down your page, draw a line $A B$ of length 12 cm .
(b) Using a straight edge and compasses only, construct the perpendicular bisector of $A B$.
(c) Complete an accurate drawing of the trapezium $A B C D$.
(d) Measure angle $A B C$, giving your answer correct to the nearest degree.
(e) Use trigonometry to calculate angle $A B C$.

Show all your working and give your answer correct to 1 decimal place.
(f) On your diagram,
(i) draw the locus of points inside the trapezium which are 5 cm from D,
(ii) using a straight edge and compasses only, construct the locus of points equidistant from $D A$ and from $D C$,
(iii) shade the region inside the trapezium containing points which are less than 5 cm from D and nearer to $D A$ than to $D C$.

The diagram shows a plan for a new city.
It is to be built inside a circle of radius 5 km .
The areas where homes can be built are shaded on the diagram.
The homes must be at least 2 km from the centre of the city, O.
The homes must also be at least 0.5 km from two main roads $C D$ and $A B$, which are in North-South and West-East directions.
(a) Using 1 cm to represent 1 km , make an accurate scale drawing showing the areas for the homes. (You do not need to shade these areas.)
(b) The town hall, T, will be built so that it is equidistant from the roads $O A$ and $O C$.

It will be 1 km from O and West of $C D$.
(i) On your scale drawing, using a straight edge and compasses only, draw the locus of points, inside the town, which are equidistant from $O A$ and $O C$.
(ii) Mark and label the point T.
(c) The police station, P, will be built so that it is equidistant from T and B.

It will be 3 km from O and North of $A B$.
Showing all your construction lines, find and label the point P.
(d) What will be the actual straight line distance between the town hall and the police station?

SEA
$\times D$

The diagram shows a map of part of a coastline.
1 centimetre represents 40 metres.
(a) A ferry leaves a port P and travels between two islands so that it is always equidistant from A and B.
Using a straight edge and compasses only, draw this locus.
(b) For safety reasons the ferry must be at least 120 metres from a ship at D.

Draw the locus of the points which form the boundary of safety around D.
(c) When the ferry is 120 metres from D it must change direction.

How far is the ferry from the port P then?

The diagram shows a farmer's field $A B C$.
The farmer decides to grow potatoes in the region of the field which is

- nearer to A than to C
and
- nearer to $A B$ than to $A C$.

Using a straight edge and compasses only, construct two loci accurately and shade this region on the diagram.
\square

(a) On the diagram above, using a straight edge and compasses only, construct
(i) the bisector of angle $A B C$,
(ii) the locus of points which are equidistant from A and from B.
(b) Shade the region inside the triangle which is nearer to A than to B and nearer to $A B$ than to $B C$.

17 (a)

What type of angle is shown by the arc on the diagram?
Answer(a) [1]
(b) $A B C D$ is a quadrilateral.

- $\quad A B$ is parallel to $D C$.
- $\quad B C$ is longer than $A D$.
(i) Draw a possible quadrilateral $A B C D$.

Answer(b)(i)
(ii) Write down the geometrical name for the quadrilateral $A B C D$.

(a) On the diagram above, using a straight edge and compasses only, construct
(i) the bisector of angle $A B C$,
(ii) the locus of points which are equidistant from A and from B.
(b) Shade the region inside the triangle which is nearer to A than to B and nearer to $A B$ than to $B C$.

9 (a) In the space below, construct the triangle $A B C$ with $A B=10 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$. Leave in your construction arcs.
The line $B C$ is already drawn.
$B C C$
(b) Measure angle $A B C$.

Answer(b) Angle $A B C=$
(c) (i) Using a straight edge and compasses only, and leaving in your construction arcs, construct the perpendicular bisector of $B C$.
(ii) This bisector cuts $A C$ at P.

Mark the position of P on the diagram and measure $A P$.

$$
\text { Answer(c)(ii) } A P=
$$

(d) Construct the locus of all the points inside the triangle which are 5 cm from A.
(e) Shade the region inside the triangle which is

- nearer to B than to C
and
- less than 5 cm from A.

(a) In the space above, construct triangle $P Q R$ with $Q R=9 \mathrm{~cm}$ and $P R=7 \mathrm{~cm}$.

Leave in your construction arcs.
The line $P Q$ is already drawn.
(b) Using a straight edge and compasses only, construct
(i) the perpendicular bisector of $P R$,
(ii) the bisector of angle $Q P R$.
(c) Shade the region inside the triangle $P Q R$ which is nearer to P than to $R \quad$ and \quad nearer to $P Q$ than to $P R$.
(d) Triangle $P Q R$ is a scale drawing with a scale 1:50000.

Find the actual distance $Q R$.
Give your answer in kilometres.

(a) Draw accurately the locus of points, inside the quadrilateral $A B C D$, which are 6 cm from the point D.
(b) Using a straight edge and compasses only, construct
(i) the perpendicular bisector of $A B$,
(ii) the locus of points, inside the quadrilateral, which are equidistant from $A B$ and from $B C$. [2]
(c) The point Q is equidistant from A and from B and equidistant from $A B$ and from $B C$.
(i) Label the point Q on the diagram.
(ii) Measure the distance of Q from the line $A B$.

> Answer(c)(ii)
\qquad
(d) On the diagram, shade the region inside the quadrilateral which is

- less than 6 cm from D
and
- nearer to A than to B
and
- nearer to $A B$ than to $B C$.

18

Find, by using accurate constructions, the region inside the circle which contains the points more than 5 cm from G and nearer to H than to G. Shade this region.

15

$P T$ and $P U$ are tangents to an arc of a circle at T and U.
(a) Using a straight edge and compasses only, construct the bisector of angle TPU.
(b) By drawing another line accurately, find the centre of the circle and label it O.

The diagram shows a quadrilateral $A B C D$.
(a) Draw the locus of points in the quadrilateral which are 5 cm from A.
(b) Using a straight edge and compasses only, draw the locus of all points inside the quadrilateral which are equidistant from C and D.
Show all your construction lines.
(c) Shade the region which contains points in the quadrilateral that are more than 5 cm from A and nearer to D than to C.

22

(a) In this part of the question use a straight edge and compasses only.

Leaving in your construction lines,

(i) construct the angle bisector of angle $A C B$,
(ii) construct the perpendicular bisector of $A C$.
(b) Draw the locus of all the points inside the triangle $A B C$ which are 7 cm from C.
(c) Shade the region inside the triangle which is nearer to A than C, nearer to $B C$ than $A C$ and less than 7 cm from C.

The diagram shows a triangle $E F G$. The side $E F$ is extended to H.
(a) Using a straight edge and compasses only, showing your construction arcs, draw
(i) the locus of points that are equidistant from E and G,
(ii) the locus of points that are equidistant from $F G$ and $F H$.
(b) Measure accurately and write down the acute angle between the two lines drawn in part (a).

The diagram shows the plan of a garden.
The garden is a trapezium with $A B=26$ metres, $D C=18$ metres and angle $D A B=80^{\circ}$.
A straight path from B to D has a length of 30 metres.
(a) (i) Using a scale of 1:200, draw an accurate plan of the garden.
(ii) Measure and write down the size of angle $A D B$ and the size of angle $D C B$.
(iii) A second path is such that all points on it are equidistant from $A B$ and from $A D$.

Using a straight edge and compasses only, construct this path on your plan.
(iv) A third path is such that all points on it are equidistant from A and from D.

Using a straight edge and compasses only, construct this path on your plan.
(v) In the garden, vegetables are grown in the region which is nearer to $A B$ than to $A D$ and nearer to A than to D.

Shade this region on your plan.
(b) Use trigonometry, showing all your working, to calculate
(i) angle $A D B$,
(ii) the length of $B C$,
(iii) the area of the garden.

The boundary of a park is in the shape of a triangle $A B C$.
$A B=240 \mathrm{~m}, B C=180 \mathrm{~m}$ and $C A=140 \mathrm{~m}$.
In part (a), show clearly all your construction arcs.
(a) (i) Using a scale of 1 centimetre to represent 20 metres, construct an accurate scale drawing of triangle $A B C$. The line $A B$ has already been drawn for you.

A
A B
(ii) Using a straight edge and compasses only, construct the bisector of angle $A C B$.

Label the point D, where this bisector meets $A B$.
(iii) Using a straight edge and compasses only, construct the locus of points, inside the triangle, which are equidistant from A and from D.
(iv) Flowers are planted in the park so that they are nearer to $A C$ than to $B C$ and nearer to D than to A.

Shade the region inside your triangle which shows where the flowers are planted.

NOT TO
SCALE

The diagram shows a circle of radius 5 cm in a square of side 18 cm .
Calculate the shaded area.

$$
\text { Answer ... } \mathrm{cm}^{2}
$$

Draw, accurately, the locus of all the points outside the triangle which are 3 centimetres away from the triangle.

The diagram shows an area of land $A B C D$ used for a shop, a car park and gardens.
(a) Using a straight edge and compasses only, construct
(i) the locus of points equidistant from C and from D,
(ii) the locus of points equidistant from $A D$ and from $A B$.
(b) The shop is on the land nearer to D than to C and nearer to $A D$ than to $A B$.

Write the word SHOP in this region on the diagram.
(c) (i) The scale of the diagram is 1 centimetre to 20 metres.

The gardens are the part of the land less than 100 m from B.
Draw the boundary for the gardens.
(ii) The car park is the part of the land not used for the shop and not used for the gardens. Shade the car park region on the diagram.
(a) Draw accurately the locus of points inside the triangle
(i) 6 cm from B,
(ii) equidistant from $A C$ and $B C$.
(b) Shade the region inside the triangle which is more than 6 cm from B and nearer to $B C$ than to $A C$.

