В

(a)	Cor The	estruct triangle <i>ABC</i> accurately, with $AC = 10$ cm and $BC = 8$ cm. In the line <i>AB</i> has been drawn for you.	[2]
(b)	(i)	Using a straight edge and compasses only, construct the bisector of angle A.	[2]
	(ii)	The bisector of angle A meets BC at X .	
		Measure the length of <i>BX</i> . Answer(b)(ii) BX = cm	[1]
(c)	(i)	Using a straight edge and compasses only, construct the perpendicular bisector of <i>AB</i> .	[2]
	(ii)	The perpendicular bisector of AB meets AC at Y and AX at Z.	
		Measure angle <i>CYZ</i> . Answer(c)(ii) Angle <i>CYZ</i> =	[1]
(d)	Sha	de the region inside triangle ABC which is	
		• nearer to AB than to AC and	

• nearer to B than to A. [1]

9 On the scale drawing opposite, point *A* is a port. *B* and *C* are two buoys in the sea and *L* is a lighthouse.

The scale is 1 cm = 3 km.

(a) A boat leaves port A and follows a straight line course that bisects angle BAC.

Using a straight edge and compasses only, construct the bisector of angle *BAC* on the scale drawing. [2]

- (b) When the boat reaches a point that is equidistant from *B* and from *C*, it changes course. It then follows a course that is equidistant from *B* and from *C*.
 - (i) Using a straight edge and compasses only, construct the locus of points that are equidistant from *B* and from *C*.Mark the point *P* where the boat changes course. [2]
 - (ii) Measure the distance AP in centimetres.

Answer(b)(ii) _____ cm [1]

(iii) Work out the actual distance *AP*.

Answer(b)(iii) km [1]

(iv) Measure the obtuse angle between the directions of the two courses.

Answer(b)(iv) [1]

(c) Boats must be more than 9 kilometres from the lighthouse, *L*.

- (i) Construct the locus of points that are 9 kilometres from *L*. [2]
- (ii) Mark the point R where the course of the boat meets this locus. Work out the actual straight line distance, AR, in kilometres.

Answer(c)(ii) km [1]

A

The line *AB* is drawn above.

Parts (i), (iii), and (v) must be completed using a ruler and compasses only. All construction arcs must be clearly shown.

(i)	Construct triangle <i>ABC</i> with $AC = 7$ cm and $BC = 6$ cm.	[2]
(ii)	Measure angle <i>BAC</i> .	
	Answer(a)(ii) Angle $BAC =$	[1]
(iii)	Construct the bisector of angle ABC.	[2]
(iv)	The bisector of angle <i>ABC</i> meets <i>AC</i> at <i>T</i> .	
	Measure the length of <i>AT</i> .	
	Answer(a)(iv) AT = cm	[1]
(v)	Construct the perpendicular bisector of the line BC.	[2]
(vi)	Shade the region that is	
	• nearer to <i>B</i> than to <i>C</i>	
	• nearer to BC than to AB .	[1]

(b) Work out the equation of the line *BC*.

Answer(b) [3]

(c) *ABC* forms a **right-angled isosceles** triangle of area 6.5 cm^2 .

Calculate the length of *AB*.

 $Answer(c) AB = \qquad \qquad \text{cm } [2]$

19

The point A lies on the circle centre O, radius 5 cm.

9

(a) Using a straight edge and compasses only, construct the perpendicular bisector of the line OA. [2]

(b) The perpendicular bisector meets the circle at the points C and D.

Measure and write down the size of the angle AOD.

Answer(b) Angle AOD = [1]

A ______B

The line *AB* is drawn above.

Parts (i), (iii), and (v) must be completed using a ruler and compasses only. All construction arcs must be clearly shown.

(i)	Construct triangle <i>ABC</i> with $AC = 7$ cm and $BC = 6$ cm.	[2]	
(ii)	Measure angle BAC.		
	Answer(a)(ii) Angle $BAC =$	[1]	
(iii)	Construct the bisector of angle <i>ABC</i> .	[2]	
(iv)	The bisector of angle ABC meets AC at T.		
	Measure the length of <i>AT</i> .		
	Answer(a)(iv) AT = cm	[1]	
(v)	Construct the perpendicular bisector of the line BC.	[2]	
(vi)	Shade the region that is		
	• nearer to <i>B</i> than to <i>C</i>		
	• nearer to <i>BC</i> than to <i>AB</i> .	[1]	

OABC is a field.

A is 88 metres due North of O.

B is 146 metres from *O* on a bearing of 040° .

C is equidistant from A and from B. The bearing of C from O is 098° .

(a) Using a scale of 1 centimetre to represent 10 metres, make an accurate scale drawing of the field *OABC*, by

	(i)	constructing the triangle OAB,	[3]
	(ii)	drawing the locus of points equidistant from A and from B,	[2]
	(iii)	completing the scale diagram of OABC.	[2]
(b)	Use (i) (i) (ii)	your scale drawing to write down the distance <i>OC</i> correct to the nearest metre, the size of angle <i>OAB</i> correct to the nearest degree.	[1] [1]
(c)	Find	the bearing of A from B.	[2]
(d)	A do Shad	nkey in the field is not more than 40 metres from C and is closer to B than to A . e the area where the donkey could be and label it D .	[3]
(e)	A ho Shad	rse in the field is not more than 20 metres from the side AB and is closer to A than to B . e the area where the horse could be and label it H .	[3]

The diagram is a scale drawing of a field. The actual length of the side AB is 100 metres.

(a) Write the scale of the drawing in the form 1 : n, where n is an integer.

Answer (a) 1 : [1]

- (b) In this part use a straight edge and compasses only. Leave in your construction lines.
 - (i) A tree in the field is equidistant from the point *A* and the point *D*. Construct the line on which the tree stands. [2]
 - (ii) The tree is also equidistant from the sides *BC* and *CD*. After constructing another line, mark the position of the tree and label it *T*. [3]

In this question show clearly all your construction arcs.

(a)	Using a	straight	edge and	compasses	only,	construct	on the	diagram	above,
-----	---------	----------	----------	-----------	-------	-----------	--------	---------	--------

(i)	the perpendicular bisector of <i>BD</i> ,	[2]
(ii)	the bisector of angle CDA.	[2]

(b) Shade the region, inside the quadrilateral, which is nearer to D than B and nearer to DC than DA. [1]

Answer the whole of this question on a new page. 2


```
The diagram shows a trapezium ABCD.
AB = 12 cm, DC = 9 cm and the perpendicular distance between these parallel sides is 7 cm.
AD = BC.
```

(a)	Approximately halfway down your page, draw a line AB of length 12 cm.	[1]
(b)	Using a straight edge and compasses only, construct the perpendicular bisector of AB.	[2]
(c)	Complete an accurate drawing of the trapezium <i>ABCD</i> .	[2]
(d)	Measure angle ABC, giving your answer correct to the nearest degree.	[1]
(e)	Use trigonometry to calculate angle <i>ABC</i> . Show all your working and give your answer correct to 1 decimal place.	[2]
(f)	 On your diagram, (i) draw the locus of points inside the trapezium which are 5 cm from <i>D</i>, (ii) using a straight edge and compasses only, construct the locus of points equidistant from <i>DA</i> and from <i>DC</i>, (iii) shade the region inside the trapezium containing points which are less than 5 cm from <i>D</i> and nearer to <i>DA</i> than to <i>DC</i>. 	[1] [2] [1]

The diagram shows a plan for a new city. It is to be built inside a circle of radius 5 km. The areas where homes can be built are shaded on the diagram. The homes must be at least 2 km from the centre of the city, O. The homes must also be at least 0.5 km from two main roads CD and AB, which are in North-South and West-East directions.

(a)	Usii (Yo	ng 1 cm to represent 1 km, make an accurate scale drawing showing the areas for the homes. u do not need to shade these areas.)	[4]
(b)	The It w	town hall, <i>T</i> , will be built so that it is equidistant from the roads <i>OA</i> and <i>OC</i> . ill be 1 km from <i>O</i> and West of <i>CD</i> .	
	(i)	On your scale drawing, using a straight edge and compasses only, draw the locus of points, in the town, which are equidistant from <i>OA</i> and <i>OC</i> .	side [2]
	(ii)	Mark and label the point T.	[1]
(c)	The It w Sho	police station, P , will be built so that it is equidistant from T and B . ill be 3 km from O and North of AB . wing all your construction lines, find and label the point P .	[3]

[1]

(d) What will be the actual straight line distance between the town hall and the police station?

SEA

X D

The diagram shows a map of part of a coastline. 1 centimetre represents 40 metres.

(a)	A ferry leaves a port P and travels between two islands so that it is always equidistant from A and B . Using a straight edge and compasses only draw this locus	[2]
	Using a straight edge and compasses only, draw this locus.	[2]
(b)	For safety reasons the ferry must be at least 120 metres from a ship at D . Draw the locus of the points which form the boundary of safety around D .	[1]
(c)	When the ferry is 120 metres from D it must change direction. How far is the ferry from the port P then?	

Answer(c) m[1]

The diagram shows a farmer's field *ABC*.

The farmer decides to grow potatoes in the region of the field which is

• nearer to A than to C

and

• nearer to *AB* than to *AC*.

Using a straight edge and compasses only, construct two loci accurately and shade this region on the diagram.

[5]

(a) On the diagram above, using a straight edge and compasses only, construct

	(i)	the bisector of angle <i>ABC</i> ,	[2]
	(ii)	the locus of points which are equidistant from A and from B .	[2]
(b)	Sha	de the region inside the triangle which is nearer to A than to B and nearer to AB than to	<i>BC</i> . [1]

What type of angle is shown by the arc on the diagram?

Answer(a) [1]

- **(b)** *ABCD* is a quadrilateral.
 - *AB* is parallel to *DC*.
 - *BC* is longer than *AD*.
 - (i) Draw a possible quadrilateral *ABCD*.

Answer(b)(i)

[1]

(ii) Write down the geometrical name for the quadrilateral *ABCD*.

Answer(b)(ii) [1]

(a) On the diagram above, using a straight edge and compasses only, construct

	(i)	the bisector of angle <i>ABC</i> ,	[2]
	(ii)	the locus of points which are equidistant from A and from B .	[2]
(b)	Sha	de the region inside the triangle which is nearer to A than to B and nearer to AB than to	<i>BC</i> . [1]

9 (a) In the space below, construct the triangle ABC with AB = 10 cm and AC = 12 cm. Leave in your construction arcs. The line BC is already drawn.

(b) Measure angle *ABC*.

Answer(b) Angle ABC =[1]

- (c) (i) Using a straight edge and compasses only, and leaving in your construction arcs, construct the perpendicular bisector of *BC*. [2]
 - (ii) This bisector cuts AC at P.

Mark the position of *P* on the diagram and measure *AP*.

 $Answer(c)(ii) AP = \qquad cm [1]$

- (d) Construct the locus of all the points inside the triangle which are 5 cm from A. [1]
- (e) Shade the region inside the triangle which is

nearer to *B* than to *C*and
less than 5 cm from *A*. [2]

	Р	Q
(a)	In the space above, construct triangle PQR with $QR = 9$ cm and $PR = 7$ cm Leave in your construction arcs. The line PQ is already drawn.	[2]
(b)	Using a straight edge and compasses only, construct	
	(i) the perpendicular bisector of PR ,	[2]
	(ii) the bisector of angle <i>QPR</i> .	[2]
(c)	Shade the region inside the triangle PQR which is nearer to P than to R and nearer to PQ than to PR .	[1]
(d)	Triangle PQR is a scale drawing with a scale 1 : 50 000.	
	Find the actual distance <i>QR</i> . Give your answer in kilometres.	

Answer(d) km [2]

(a)	Dra poi	iw accurately the locus of points, inside the quadrilateral <i>ABCD</i> , which are 6 cm from the nt <i>D</i> .	[1]
(b)	Usi	ng a straight edge and compasses only, construct	
	(i)	the perpendicular bisector of AB ,	[2]
	(ii)	the locus of points, inside the quadrilateral, which are equidistant from AB and from BC	. [2]
(c)	The	e point Q is equidistant from A and from B and equidistant from AB and from BC .	
	(i)	Label the point Q on the diagram.	[1]
	(ii)	Measure the distance of Q from the line AB .	
		Answer(c)(ii) cm	[1]
(d)	On	the diagram, shade the region inside the quadrilateral which is	
		• less than 6 cm from <i>D</i>	
		 nearer to A than to B 	
		and	

• nearer to AB than to BC. [1]

Find, by using **accurate** constructions, the region inside the circle which contains the points more than 5 cm from G and nearer to H than to G. Shade this region. [4]

PT and PU are tangents to an arc of a circle at T and U.

- (a) Using a straight edge and compasses only, construct the bisector of angle *TPU*. [2]
- (b) By drawing another line accurately, find the centre of the circle and label it *O*. [2]

The diagram shows a quadrilateral ABCD.

- (a) Draw the locus of points in the quadrilateral which are 5 cm from A. [1]
- (b) Using a straight edge and compasses only, draw the locus of all points inside the quadrilateral which are equidistant from C and D.
 Show all your construction lines. [2]
- (c) Shade the region which contains points in the quadrilateral that are more than 5 cm from A and nearer to D than to C.

[1]

(a) In this part of the question use a straight edge and compasses only.

Leaving in your construction lines,

(i)	construct the angle bisector of angle <i>ACB</i> ,	[2]
-----	--	-----

- (ii) construct the perpendicular bisector of AC. [2]
- (b) Draw the locus of all the points inside the triangle ABC which are 7 cm from C. [1]
- (c) Shade the region inside the triangle which is nearer to A than C, nearer to BC than AC and less than 7 cm from C. [1]

The diagram shows a triangle *EFG*. The side *EF* is extended to *H*.

(a) Using a straight edge and compasses only, showing your construction arcs, draw

(i)	the locus of points that are equidistant from E and G ,	[2]
(ii)	the locus of points that are equidistant from FG and FH.	[2]

(b) Measure accurately and write down the acute angle between the two lines drawn in part (a).

Answer(b) [1]

The diagram shows the plan of a garden.

The garden is a trapezium with AB = 26 metres, DC = 18 metres and angle $DAB = 80^{\circ}$.

A straight path from *B* to *D* has a length of 30 metres.

(a) (i)	Using a scale of 1:200, draw an accurate plan of the garden.	[3]
(ii)	Measure and write down the size of angle <i>ADB</i> and the size of angle <i>DCB</i> .	[2]
(iii)	A second path is such that all points on it are equidistant from <i>AB</i> and from <i>AD</i> .	
	Using a straight edge and compasses only, construct this path on your plan.	[2]
(iv)	A third path is such that all points on it are equidistant from A and from D.	
	Using a straight edge and compasses only, construct this path on your plan.	[2]
(v)	In the garden, vegetables are grown in the region which is nearer to <i>AB</i> than to <i>AD</i> and nearer to <i>A</i> than to <i>D</i> .	
	Shade this region on your plan.	[1]
(b) Use	e trigonometry, showing all your working, to calculate	
(i)	angle ADB,	[3]
(ii)	the length of <i>BC</i> ,	[4]
(iii)	the area of the garden.	[3]

The boundary of a park is in the shape of a triangle *ABC*. AB = 240 m, BC = 180 m and CA = 140 m.

In part (a), show clearly all your construction arcs.

(a) (i) Using a scale of 1 centimetre to represent 20 metres, construct an accurate scale drawing of triangle *ABC*. The line *AB* has already been drawn for you.

Α	В

		[2]
(ii)	Using a straight edge and compasses only, construct the bisector of angle <i>ACB</i> .	
	Label the point D , where this bisector meets AB .	[2]
(iii)	Using a straight edge and compasses only, construct the locus of points, inside the trian which are equidistant from A and from D .	igle, [2]
(iv)	Flowers are planted in the park so that they are nearer to AC than to BC and ne to D than to A .	arer
	Shade the region inside your triangle which shows where the flowers are planted.	[1]

The diagram shows a circle of radius 5cm in a square of side 18cm.

Calculate the shaded area.

Answer cm^2 [3]

14

Draw, accurately, the locus of all the points **outside** the triangle which are 3 centimetres away from the triangle. [3]

The diagram shows an area of land *ABCD* used for a shop, a car park and gardens.

(a)	Using a straight edge and compasses only, construct		
	(i)	the locus of points equidistant from C and from D,	[2]
	(ii)	the locus of points equidistant from AD and from AB.	[2]
(b)	The Wri	shop is on the land nearer to D than to C and nearer to AD than to AB . te the word SHOP in this region on the diagram.	[1]
(c)	(i)	The scale of the diagram is 1 centimetre to 20 metres. The gardens are the part of the land less than 100 m from B . Draw the boundary for the gardens.	[1]
	(ii)	The car park is the part of the land not used for the shop and not used for the gardens. Shade the car park region on the diagram.	[1]

(a) Draw accurately the locus of points inside the triangle

(i) $6 \operatorname{cm} \operatorname{from} B$, [1]

- (ii) equidistant from AC and BC. [1]
- (b) Shade the region inside the triangle which is more than 6 cm from *B* and nearer to *BC* than to *AC*. [1]