## Physics: Light

Whole unit overview

| Learning Outcomes |  | Suggested Teaching Activities | Resources |
| :--- | :--- | :--- | :--- |
| 3.2 (a) | Describe the formation, and give <br> the characteristics, of an optical <br> image by a plane mirror. <br> Use the law angle of incidence $=$ <br> angle of reflection. | Use simple experiments with optical pins to find <br> the position of the image in a plane mirror. Use <br> ray box experiments to investigate angle of <br> incidence = angle of reflection. | How to make a simple periscope. <br> http://www-2.cs.cmu.edu/~rapidproto |
|  | Perform simple constructions, <br> measurements and calculations. | Extend to draw simple ray diagrams. | /students/waynec/project3/periscope.html |
| 3.2 (b) | Describe an experimental <br> demonstration of the refraction of <br> light. | Use rectangular transparent blocks (Perspex or <br> glass) with optical pins or ray boxes to <br> investigate refraction. | Instructions for a demonstration of total internal <br> reflection |
| Use the terminology for the angle <br> of incidence $i$ and angle of <br> refraction r and describe the <br> passage of light through parallel- <br> sided transparent material give <br> the meaning of critical angle. <br> Develop this to experiments with a semicircular <br> transparent block to investigate critical angle and <br> total internal reflection. | http://www.learn.co.uk/learnthings |  |  |
| Describe internal and total | click on enter, then KS4 science foundation, then light <br> and colour, then total internal reflection. <br> internal reflection. | More details on further experiments related to total <br> internal reflection and much more |  |


|  | Recall and use definition of <br> refractive index $n$ in terms of <br> speed. <br> Recall and use the equation sin <br> i/sin $r=n$. <br> Describe the action of optical <br> fibres. | Extend the refraction work with the rectangular <br> block to include quantitative use of sin i/sin r. <br> Encourage deeper thought with able candidates <br> by discussing refractive index in terms of the <br> speed of light in different materials. <br> Use inexpensive 'novelty' light items to <br> demonstrate optical fibres. |  |
| :--- | :--- | :--- | :--- |
| 3.2 (c) | Describe the action of a thin <br> converging lens on a beam of <br> light. <br> Use the terms principal focus <br> and focal length. <br> Draw ray diagrams to illustrate <br> the formation of a real image by <br> a single lens. | Investigate converging lenses by: <br> forming an image of a distant object (e.g. a tree <br> or building seen from the laboratory window), <br> bringing parallel rays from a ray box to a focus <br> through a cylindrical lens, drawing ray diagrams <br> to scale to show the formation of a real image. | http://www.physicsclassroom.com/Class/refrn/U14L5a. <br> htmis site a large amount of information and teaching on |
| Draw ray diagrams to illustrate <br> the formation of a virtual image <br> by a single lens. <br> Use and describe the use of a <br> single lens as a magnifying <br> glass. | Extend the ray diagram work to include the <br> formation of a virtual image and use a magnifying <br> glass. |  |  |


| 3.2 (d) | Give a qualitative account of the <br> dispersion of light as illustrated <br> by the action on light of a glass <br> prism. | Use a simple experiment, or demonstration, to <br> show that white light from a ray box or slide <br> projector is dispersed by a prism. A single slit can <br> be cut from a piece of stiff card and inserted in <br> the slide carrier of the projector to produce a ray <br> that can be shone through the prism on to a <br> screen. Although not part of the syllabus, <br> students will find it interesting to learn a little <br> about mixing coloured lights at this stage. | Interactive colour mixing (no need for a colour mixing <br> kit or blackout) <br> http://www.phy.ntnu.edu.tw/java/shadow/shadow.html |
| :--- | :--- | :--- | :--- |
| For prism work: |  |  |  |
| http://www.learn.co.uk/learnthings |  |  |  |
| Go to Key Stage 4 Science foundation |  |  |  |
| Go to light and colour, then dispersion |  |  |  |

