I.G.C.S.E. Volume \& Surface Area

Index:
Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8

You can access the solutions from the end of each question

Question 1

Find the volume of the following prisms. All lengths are in cm .
a.

b.

c.

d.

Click here to read the solution to this question
Click here to return to the index

Solution to question 1

a.

$$
\begin{aligned}
V & =I \times w \times h \\
& =4 \times 7 \times 2 \\
& =56 \mathrm{~cm}^{3}
\end{aligned}
$$

b.

$$
\begin{aligned}
\text { V } & =\text { area of cross section } \times \text { length } \\
& =\text { area of trapezium } \times \text { length } \\
& =\frac{1}{2}(6.4+4.2) 5.7 \\
& =30.21 \\
& =30.2 \mathrm{~cm}^{3}
\end{aligned}
$$

c.

d.

$$
\begin{aligned}
\text { V } & =\text { area of cross section } \times \text { length } \\
& =\text { area of triangle } \times \text { length } \\
& =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times 4.8 \times 3.3 \times 7.7 \\
& =60.984 \\
& =61.0 \mathrm{~cm}^{3}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 2
2. Find the surface area of the following rectangular prism. All lengths are in cm.

Click here to read the solution to this question

Click here to return to the index

Solution to question 2

Drawing the net we can see

The surface area is the sum of the area of each of the six rectangles.

$$
\begin{aligned}
\text { Surface area } & =2 \times(4 \times 2+7 \times 2+7 \times 4) \\
& =100 \mathrm{~cm}^{2}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 3

a. Find the volume in litres of the following cylinder. $\left(1 L=1000 \mathrm{~cm}^{3}\right)$.

b. Calculate the surface area in cm^{2}.

Click here to read the solution to this question
Click here to return to the index

Solution to question 3

a. Note that $r=\frac{1}{2} d=\frac{1}{2} \times 6=3 \mathrm{~cm}$

$$
\begin{aligned}
V & =\text { area of base } \times \text { height } \\
& =\pi r^{2} h \\
& =\pi(3)^{2}(15) \\
& =135 \pi \\
& =424 \mathrm{~cm}^{3}
\end{aligned}
$$

b. Drawing the net

From the net we can see that the surface area is the sum of the area of the two circles and the rectangle.

$$
\begin{aligned}
S A & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi(3)^{2}+2 \pi(3)(15) \\
& =18 \pi+90 \pi \\
& =108 \pi \\
& =339 \mathrm{~cm}^{2}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 4

A solid cylinder of radius 5 cm and height 9 cm is melted down and recast into a solid cube. Find the side of the cube.

Click here to read the solution to this question
Click here to return to the index

Solution to question 4

The cylinder and the cube have the same volume.
The volume of the cylinder is given $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi(5)^{2}(9) \\
& =225 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Now the volume of the cylinder =the volume of the cube
Let s be the length of the side of the cube
The volume of the cube $=s^{3}$

$$
\begin{aligned}
225 \pi & =s^{3} \\
s & =\sqrt[3]{225 \pi} \\
& =8.91 \mathrm{~cm}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 5

a. Find the volume of the following cone, with radius 5 cm and vertical height 12 cm .

b. The cone has a slant height of $I \mathrm{~cm}$. Find the value of I.
c. Find the curved surface area of the cone.

Click here to read the solution to this question

Click here to return to the index

Solution to question 5

a. The volume of a cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \pi(5)^{2}(12) \\
& =100 \pi \\
& =314 \mathrm{~cm}^{3}
\end{aligned}
$$

b.

c. \quad The curved surface area $=\pi r l$

$$
\begin{aligned}
& =\pi(5)(13) \\
& =65 \pi \\
& =204 \mathrm{~cm}^{2}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 6

Find the volume and curved surfaced area of a sphere radius 4 cm .
Click here to read the solution to this question
Click here to return to the index

Solution to question 6

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi(4)^{3} \\
& =\frac{256}{3} \pi \\
& =268 \mathrm{~cm}^{3}
\end{aligned}
$$

Curved surface area $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \pi(4)^{2} \\
& =64 \pi \\
& =201 \mathrm{~cm}^{2}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 7

Find the height of a squared based pyramid of volume $40 \mathrm{~m}^{3}$ and base area $9 \mathrm{~m}^{2}$

Click here to read the solution to this question

Click here to return to the index

Solution to question 7

The volume of a pyramid $=\frac{1}{3} \times$ base area \times height

$$
\begin{aligned}
\Rightarrow \text { height } & =\frac{3 \times \text { volume }}{\text { base area }} \\
& =\frac{3 \times 40}{9} \\
& =13.3 \mathrm{~cm}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 8

A small pencil consists of a cylinder of radius 6 mm , which is 'sandwiched' between a hemisphere and cone of the same radius. The height of the 50 mm . Find the total volume of the pencil.

Diagram not to scale

Click here to read the solution to this question

Click here to return to the index

Solution to question 8

Considering each shape separately, leaving our answers in terms of π, we have

Volume of hemisphere $=\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{4}{3} \pi 6^{3}\right) \\
& =144 \pi
\end{aligned}
$$

Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi(6)^{2}(50) \\
& =1800 \pi
\end{aligned}
$$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \pi(6)^{2}(30) \\
& =360 \pi
\end{aligned}
$$

Total volume of pencil $=144 \pi+1800 \pi+360 \pi=2304 \pi=7238=7240 \mathrm{~mm}^{3}$

Click here to read the question again

Click here to return to the index

