I.G.C.S.E. Trigonometry

Index:
Please click on the question number you want

Question 1

 Question 2Question 3
Question 5

Question 4
Question 6

You can access the solutions from the end of each question

Question 1

1. For the triangles below calculate the missing lengths.
a.

b.

Click here to read the solution to this question
Click here to return to the index

Solution to question 1
a.

b.

Using Pythagoras' theorem, remembering that 12 m is the hypotenuse.

$$
\begin{aligned}
12^{2} & =y^{2}+9^{2} \\
y^{2} & =12^{2}-9^{2} \\
y & =\sqrt{144-81} \\
& =\sqrt{63} \\
& =7.94 \mathrm{~m}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 2
For the triangles below find the missing letters.
a.

b.

d.
c.

Click here to read the solution to this question
Click here to return to the index

Solution to question 2

First label the sides of each triangle, adjacent, opposite and hypotenuse.
a.

b.

c.

d.

The missing side is the opposite side and we have the adjacent and angle hence

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}} \Rightarrow \tan 34^{\circ}=\frac{a}{1.2} \\
& \Rightarrow a=1.2 \times \tan 34^{\circ}=0.809 \mathrm{~cm}
\end{aligned}
$$

The missing side is the adjacent side and we have the hypotenuse and angle hence

$$
\begin{aligned}
& \cos \theta=\frac{\text { adj }}{\text { hyp }} \Rightarrow \cos 22^{\circ}=\frac{b}{7.5} \\
& \Rightarrow b=7.5 \times \cos 22^{\circ}=6.95 \mathrm{~cm}
\end{aligned}
$$

The angle is and we know the opposite side and hypotenuse hence
$\sin \theta=\frac{\mathrm{opp}}{\text { hyp }} \Rightarrow \sin c=\frac{4.6}{7.3}$
$\Rightarrow c=\sin ^{-1}\left(\frac{4.6}{7.3}\right)=39.1^{\circ}$

The missing side is the hypotenuse side and we have the adjacent side and angle hence
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \Rightarrow \cos 17.5^{\circ}=\frac{3.45}{d}$
$\Rightarrow d=\frac{3.45}{\cos 17.5^{\circ}}=3.62 \mathrm{~cm}$

Question 3

In the diagram below find the following lengths
a. $A C$
b. $A D$
c. $C D$.

Click here to read the solution to this question
Click here to return to the index

Solution to question 3

a. First draw out triangle $A B C$ separately

$$
\begin{aligned}
& \cos \theta=\frac{\mathrm{adj}}{\mathrm{hyp}} \Rightarrow \cos 27^{\circ}=\frac{5.6}{A C} \\
& A C=\frac{5.6}{\cos 27^{\circ}}=6.29 \mathrm{~cm}
\end{aligned}
$$

b. First draw out triangle $A C D$ separately
A

$$
\begin{aligned}
& \cos \theta=\frac{\mathrm{adj}}{\text { hyp }} \Rightarrow \cos 32^{\circ}=\frac{A D}{\frac{5.6}{\cos 27^{\circ}}} \\
& \Rightarrow A D=\frac{5.6 \times \cos 32^{\circ}}{\cos 27^{\circ}}=5.33 \mathrm{~cm}
\end{aligned}
$$

c. Considering triangle $A C D$.

$$
\begin{aligned}
& \sin \theta=\frac{\text { opp }}{\text { hyp }} \Rightarrow \sin 32^{\circ}=\frac{C D}{\frac{5.6}{\cos 27^{\circ}}} \\
& \Rightarrow A D=\frac{5.6 \times \sin 32^{\circ}}{\cos 27^{\circ}}=3.33 \mathrm{~cm}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 4

A ship sails from Porthampton on a bearing of 120° towards a buoy marker for 60 km and then changes course to a bearing of 150° for another 80 km until it reaches Littlehampton.
a. Draw a scale diagram using a scale of 1 cm to 10 km and find the distance and bearing of Littlehampton from Porthampton.
b. Using trigonometry, calculate how far east and how far south the ship has travelled.
c. Calculate the distance and bearing of Littlehampton from Porthampton.

Click here to read the solution to this question

Click here to return to the index

Solution to question 4

a. Scale drawing scale 1 cm to 10 km .

b. Drawing out triangles PAB and BDL separately we have

$\cos \theta=\frac{\text { adj }}{\text { hyp }} \Rightarrow \cos 30^{\circ}=\frac{P A}{60}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \Rightarrow \cos 60^{\circ}=\frac{P A}{80}$
$\Rightarrow P A=60 \times \cos 30^{\circ}$ (East) $\quad \Rightarrow P A=80 \times \cos 60^{\circ}$ (East)
$\sin \theta=\frac{\mathrm{opp}}{\text { hyp }} \Rightarrow \sin 30^{\circ}=\frac{A B}{60} \quad \sin \theta=\frac{\mathrm{opp}}{\text { hyp }} \Rightarrow \sin 60^{\circ}=\frac{A B}{80}$
$\Rightarrow A B=60 \times \sin 30^{\circ}$ (South)
$\Rightarrow A B=80 \times \sin 60^{\circ}$ (South)
Click here to continue with solution or go to next page

The total distance east is $=60 \cos 30^{\circ}+80 \cos 60^{\circ}=91.961 \ldots=92.0 \mathrm{~km}$
The total distance south is $=60 \sin 30^{\circ}+80 \sin 60^{\circ}=99.282 \ldots=99.3 \mathrm{~km}$
c. The distance PL is found by Pythagoras' theorem

$$
\begin{aligned}
P L & =\sqrt{\left(60 \cos 30^{\circ}+80 \cos 60^{\circ}\right)^{2}+\left(60 \sin 30^{\circ}+80 \sin 60^{\circ}\right)^{2}} \\
& =135.328 \ldots \\
& =135 \mathrm{~km}
\end{aligned}
$$

We need to find angle $C \hat{P} L$ so we use triangle $C P L$

$$
\begin{aligned}
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}} \Rightarrow C \hat{P} L & =\tan ^{-1}\left(\frac{60 \sin 30^{\circ}+80 \sin 60^{\circ}}{60 \cos 30^{\circ}+80 \cos 60^{\circ}}\right) \\
& =47.2^{\circ}
\end{aligned}
$$

But we need to find the bearing of Littlehampton from Portshampton, which is given by

$$
90^{\circ}+47.2^{\circ}=137.2^{\circ}
$$

Click here to read the question again

Click here to return to the index

Question 5

The height of an eye of a man is 175 cm . He is standing 20 m from a building, which has a flagpole on it. He looks up at an angle of elevation 23° and sees the top of the building. He then looks up at the top of the flagpole, which has an angle of elevation of 28°.
a. Calculate the height of the building.
b. Calculate the height of the flagpole.

Click here to read the solution to this question

Click here to return to the index

Solution to question 5

First draw a diagram

a. Consider triangle $A B C$

$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}} \Rightarrow \tan 23^{\circ}=\frac{B C}{20}$
adj
$B C=20 \times \tan 23^{\circ}=8.49 \mathrm{~m}$

The height of the wall is
$=1.75+8.49=10.239 \ldots=10.2 \mathrm{~m}$
b. Consider triangle $A B D$

adj
$\tan \theta=\frac{\text { opp }}{\text { adj }} \Rightarrow \tan 28^{\circ}=\frac{B C}{20}$
$B C=20 \times \tan 28^{\circ}=10.63 \mathrm{~m}$

The height of the flagpole from the ground is
$=1.75+10.63=12.384 \mathrm{~m}$
Height of flagpole is $C D$
$=12.38-10.24=2.14 \mathrm{~m}$

Click here to read the question again

Click here to return to the index

Question 6

A rectangular box $A B C D E F G H$ has $A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A E=3 \mathrm{~cm}$
Calculate
a. $A C$,
b. $A G$,
c. The angle $C \hat{A} G$.

Click here to read the solution to this question

Click here to return to the index

Solution to question 6

a. Consider triangle ABC

b. Consider triangle $A C G$.

By Pythagoras' theorem

$$
\begin{aligned}
A G & =\sqrt{61+3^{2}} \text { Note }(\sqrt{61})^{2}=61 \\
& =\sqrt{70} \\
& =8.37 \mathrm{~cm}
\end{aligned}
$$

c. Consider triangle $A C G \cdot \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}} \Rightarrow C \hat{A} G=\tan ^{-1}\left(\frac{3}{\sqrt{61}}\right)=21.0^{\circ}$

Click here to read the question again
Click here to return to the index

