I.G.C.S.E. Standard Form, Ratio \& Proportion

Index:

Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8
Question 9	Question 10
Question 11	Question 12

You can access the solutions from the end of each question

Question 1

Write the following numbers in standard form
a. 5000
b. 80000
c. 0.000456
d. 0.02
e. 60 million

Click here to read the solution to this question

Click here to return to the index

Solution to question 1

Remember that a number $a \times 10^{n}$ is in standard form when $1 \leq a<10$ and that $n \in \mathbb{Z}$ (positive or negative integer).
a. $5000=5 \times 1000=5 \times 10^{3}$
b. $80000=8 \times 10000=8 \times 10^{4}$
c. $0.000456=4.56 \times \frac{1}{10000}=4.56 \times 10^{-4}$
d. $0.02=2 \times \frac{1}{100}=2 \times 10^{-2}$
e. 60 million $=60000000=6 \times 10000000=6 \times 10^{7}$

Click here to read the question again

Click here to return to the index

Question 2

Work out the following, giving your answers in standard form.
a. 80000×34000
b. $\frac{0.0045}{900}$
c. $(0.04)^{3}$
d. 0.0003×0.001

Click here to read the solution to this question

Click here to return to the index

Solution to question 2
a. $80000 \times 34000=8 \times 10^{4} \times 3.4 \times 10^{4}=27.2 \times 10^{8}=2.72 \times 10^{9}$
b. $\frac{0.0045}{900}=\frac{4.5 \times 10^{-3}}{9 \times 10^{2}}=0.5 \times 10^{-5}=5 \times 10^{-6}$
c. $(0.04)^{3}=\left(4 \times 10^{-2}\right)^{3}=64 \times 10^{-6}=6.4 \times 10^{-5}$
d. $0.0003 \times 0.001=3 \times 10^{-4} \times 1 \times 10^{-3}=3 \times 10^{-7}$

Click here to read the question again
Click here to return to the index

Question 3

Write the ratio $3: 7$ into the form
a. $1: n$
b. $n: 1$

Click here to read the solution to this question
Click here to return to the index

Solution to question 3
a. $3: 7=\frac{3}{3}: \frac{7}{3}=1: \frac{7}{3}$
b. $\quad 3: 7=\frac{3}{7}: \frac{7}{7}=\frac{3}{7}: 1$

Click here to read the question again
Click here to return to the index

Question 4

Divide 2400 kg in the ratio $1: 2: 3$.
Click here to read the solution to this question
Click here to return to the index

Solution to question 4

To divide 2400 kg in the ratio $1: 2: 3$.
There are $1+2+3=6$ shares altogether
Therefore one share is $=\frac{2400}{6}=400 \mathrm{~kg}$
two shares $=2 \times 400=800 \mathrm{~kg}$
three shares $=3 \times 400=1200 \mathrm{~kg}$
Therefore 2400 kg in the ratio $1: 2: 3$ is $400 \mathrm{~kg}: 800 \mathrm{~kg}: 1200 \mathrm{~kg}$
Click here to read the question again

Click here to return to the index

Question 5

A sum of money is divided between three people José, Pedro and César If the ratio of José's share to Pedro's share is $3: 2$ and the ratio of Pedro's share to César's share is $4: 7$, what was the ratio of José's share to César's share?

Click here to read the solution to this question

Click here to return to the index

Solution to question 5

José to Pedro	Pedro to César
$3: 2$	$4: 7$
$\frac{3}{2}: 1$	$1: \frac{7}{4}$

Therefore the ratio of José's share to César's share is $\frac{3}{2}: \frac{7}{4}=6: 7$
Click here to read the question again
Click here to return to the index

Question 6

Six cans of paint cost $\$ 1.80$. How much does eight cans of paint cost?
Click here to read the solution to this question
Click here to return to the index

Solution to question 6

The ratio of cans of paint to cost is
\(\times \frac{8}{6}=\frac{4}{3}\left(\begin{array}{ccc}Paint \& Cost

\& \& \$ 1.80

8 \& : \& ?\end{array}\right) \times \frac{4}{3} \quad\)| Direct |
| :---: |
| proportion |

If the number of cans of paint goes up then the cost will increase.
The cost of 8 cans of paint is $=\frac{4}{3^{1}} \times \frac{1.80^{0.6}}{1}=\$ 2.40$

Click here to read the question again

Click here to return to the index

Question 7

Ten bottles of coca cola contain 15 litres. How much does seven bottles contain?

Click here to read the solution to this question
Click here to return to the index

Solution to question 7

The ratio of bottles of coca cola to capacity is

If the number of bottles of coca cola goes down then the capacity will decrease.

The capacity of 7 bottles of coca cola is $=\frac{7}{10^{2}} \times \frac{15^{3}}{1}=\frac{21}{2}=10 \frac{1}{2}$ litres

Click here to read the question again

Click here to return to the index

Question 8

It takes sixteen men three days to build a wall. How long will it take nine men to build the same wall?

Click here to read the solution to this question
Click here to return to the index

Solution to question 8

The ratio of men to days is
\(\left.\times \frac{9}{16} \quad \begin{array}{ccc}Men \& Days

16 \& : \& 3

9 \& : \& ?\end{array}\right) \times \frac{16}{9} \quad\)| Inversely |
| :---: |
| proportional |

If the number of men goes down then the number of days will increase.
The number of days for nine men to build the wall is

$$
=\frac{16}{9^{3}} \times \frac{Z^{1}}{1}=\frac{16}{3}=5 \frac{1}{3} \text { days }
$$

Click here to read the question again

Click here to return to the index

Question 9

A ship has enough food to last 600 passengers nine days. How many passengers can the ship take on if it is on a twelve-day cruise?

Click here to read the solution to this question
Click here to return to the index

Solution to question 9

The ratio of passengers' food to days is

If the number of days increases the number of passengers has to decrease.
The capacity of 7 bottles of coke is $=\frac{3}{4^{11}} \times \frac{600^{150}}{1}=450$ passengers.

Click here to read the question again

Click here to return to the index

Question 10

A bottle of wine costs $\mathrm{S} / .14 .50$ in an airport duty free shop. How much will it cost him in
a. U.S. (dollars) if $\$ 1=\mathrm{S} / .3 .45$
b. U.K. (pounds) if $\$ 1=£ 0.69$

Click here to read the solution to this question

Click here to return to the index

Solution to question 10

a. The ratio of U.S. (dollars) to Peruvian (soles)
$\times \frac{14.50}{3.45}$ (\(\left.\begin{array}{ccc}\$ \& \&

1 \& : \& 3.45

? \& : \& 14.50\end{array}\right) \times \frac{14.50}{3.45} \quad\)| Direct |
| :---: |
| proportion |

If the number of Peruvian soles increases so will the number of U.S. dollars.

The cost in U.S. dollars $=\frac{14.50}{3.45} \times \frac{1}{1}=\$ 4.20$
b. The ratio of U.S. (dollars) to English pounds

If the number of Peruvian soles increases so will the number of U.S. dollars.

The cost in U.K. pounds $=4.20 \times 0.69=£ 2.90$

Click here to read the question again

Click here to return to the index

Question 11

A man goes to Japan for his holiday form the U.S.A. and changes $\$ 1000$ in to yen at the rate of $\$ 1$ to $¥ 130$. Whilst in Japan he spends $¥ 43000$. On his return to the U.S.A. the exchange rate has changed to $\$ 1$ to $¥ 125$. How much money in $\$$ will he have left?

Click here to read the solution to this question

Click here to return to the index

Solution to question 11

The ratio of U.S. (dollars) to Japanese (yen) is

If the number of U.S. dollars increases so will the number of Japanese yen.
The amount of money he has in Japanese yen $=1000 \times 130=¥ 130000$

He then spends $¥ 43000$ and therefore he has $¥ 130000-¥ 43000=¥ 87000$ to change back into U.S. dollars

The ratio of U.S. (dollars) to Japanese (yen) is

If the number of Japanese yen increases so will the number of U.S. dollars.
The amount left cost in U.S. dollars $=\frac{87000}{125}=\$ 696$

Click here to read the question again

Click here to return to the index

Question 12
If the scale of a map is $1: 50000$, calculate
a. the length of a lake which appears 2.5 cm long on the map in km,
b. the length on the map of a road that appears as 8 km long in cm ,
c. the area of a forest which a appears as $5 \mathrm{~cm}^{2}$ on the map in km^{2}.

Click here to read the solution to this question

Click here to return to the index

Solution to question 12

a. The scale of the map is 1 cm to 50000 cm

Map Earth

The length of the lake on the earth is $2.5 \times 50000=125000 \mathrm{~cm}$
$125000 \mathrm{~cm}=\frac{125000}{100}=1250 \mathrm{~m}=\frac{1250}{1000}=1.25 \mathrm{~km}$
Note: $1 \mathrm{~km}=1000 \mathrm{~m}$

$$
1 \mathrm{~m}=100 \mathrm{~cm}
$$

b. $8 \mathrm{~km}=8 \times 1000=8000 \mathrm{~m}=8000 \times 100=800000 \mathrm{~cm}$
$\times 16\left(\begin{array}{cc}\left.\begin{array}{cc}\text { Map } & \text { Earth } \\ ? & 50000 \\ ? & 800000\end{array}\right) \times \frac{800000}{50000}=16 \quad \begin{array}{c}\text { Direct } \\ \text { proportion }\end{array} \\ \hline\end{array}\right.$

The length of the road on the map is $1 \times 16=16 \mathrm{~cm}$
c. Now consider the area ratio which is $1: 50000^{2}$

Map Earth
$\times 5$

Direct proportion

The area of a forest on the earth is $5 \times 50000^{2}=1.25 \times 10^{10} \mathrm{~cm}^{2}$
Now $1.25 \times 10^{10} \mathrm{~cm}^{2}=\frac{1.25 \times 10^{10}}{10000}=1250000 \mathrm{~m}^{2}=\frac{1250000}{1000000}=1.25 \mathrm{~km}^{2}$
Note: $\quad 1 \mathrm{~km}^{2}=1000 \mathrm{~m} \times 1000 \mathrm{~m}=1000000 \mathrm{~m}^{2}$

$$
1 \mathrm{~m}^{2}=100 \mathrm{~cm} \times 100 \mathrm{~cm}=10000 \mathrm{~cm}^{2}
$$

Click here to read the question again

Click here to return to the index

