I.G.C.S.E. Similarity

Index:
Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8

You can access the solutions from the end of each question

Question 1

1. Find the sides marked with letters.

Click here to read the solution to this question
Click here to return to the index

Solution to question 1

Consider $\triangle A B C$ and $\triangle D E F$.

$$
\begin{array}{rc}
\text { We have } \begin{array}{l}
\hat{A}=\hat{D} \\
\hat{B}=\hat{E} \\
\hat{C}=\hat{F}
\end{array} & \text { Hence } \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D} \\
\frac{a}{10}=\frac{4}{b}=\frac{3}{9} \\
& \Rightarrow \frac{a}{10}=\frac{3}{9} \Rightarrow \frac{a}{10}=\frac{1}{3} \Rightarrow a=\frac{10}{3}=3 \frac{1}{2} \mathrm{~cm} \\
& \Rightarrow \frac{4}{b}=\frac{3}{9} \Rightarrow \frac{4}{b}=\frac{1}{3} \Rightarrow b=12 \mathrm{~cm}
\end{array}
$$

Click here to read the question again
Click here to return to the index

Question 2
Find the sides marked with letters.

Click here to read the solution to this question
Click here to return to the index

Solution to question 2
Consider $\triangle A B C$ and $\triangle D E F$.

We have $\begin{aligned} \hat{A} & =\hat{D} \quad \quad \text { Hence } \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D} \\ \hat{B} & =\hat{E} \\ \hat{C} & =\hat{F}\end{aligned}$

$$
\begin{gathered}
\frac{8}{d}=\frac{3}{5}=\frac{6}{7} \\
\Rightarrow \frac{c}{7}=\frac{3}{5} \Rightarrow 5 c=21 \Rightarrow c=\frac{21}{5}=4 \frac{1}{5} \mathrm{~cm} \\
\Rightarrow \frac{8}{d}=\frac{3}{5} \Rightarrow 40=3 d \quad \Rightarrow b=\frac{40}{3}=13 \frac{1}{3} \mathrm{~cm}
\end{gathered}
$$

Click here to read the question again
Click here to return to the index

Question 3

Find the sides marked with letters.

Click here to read the solution to this question
Click here to return to the index

Solution to question 3

$\triangle A B E$ and $\triangle A C D$ are similar

We have $\hat{A}=\hat{A}$ (same angle in both triangles)
$\hat{B}=\hat{C} \quad$ (corresponding angles)
$\hat{E}=\hat{D}$ (corresponding angles)
Hence $\frac{A B}{A C}=\frac{B E}{C D}=\frac{E A}{D A} \quad \frac{y}{y+3}=\frac{4}{6}=\frac{4}{4+x}$

$$
\begin{aligned}
& \Rightarrow \frac{4}{6}=\frac{4}{4+x} \Rightarrow \frac{2}{3}=\frac{4}{4+x} \\
& \Rightarrow 2(4+x)=12 \Rightarrow 8+2 x=12 \Rightarrow 2 x=4 \quad \Rightarrow x=2 \mathrm{~cm} \\
& \Rightarrow \frac{4}{6}=\frac{y}{y+3} \Rightarrow 4(y+3)=6 y \Rightarrow 4 y+12=6 y \Rightarrow 12=2 y \quad \Rightarrow y=6 \mathrm{~cm}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 4

Find the sides marked with letters.

Click here to read the solution to this question
Click here to return to the index

Solution to question 4

$\triangle W Y Z$ and $\triangle Z Y X$ are similar

We have $\hat{W}=\hat{Z}$

$$
\begin{array}{ll}
\hat{Y}=\hat{Y} & \text { (same angle in both triangles) } \\
\hat{Z}=\hat{X} & \text { (both right-angles) }
\end{array}
$$

Hence $\frac{W Y}{Z Y}=\frac{Y Z}{Y X}=\frac{Z W}{X Z} \quad \frac{w+12}{13}=\frac{13}{12}=\frac{v}{5}$

$$
\Rightarrow \frac{13}{12}=\frac{v}{5} \Rightarrow 65=12 v \quad \Rightarrow v=\frac{65}{12}=5 \frac{5}{12} \mathrm{~cm}
$$

$\Rightarrow \frac{w+12}{13}=\frac{13}{12} \Rightarrow 12(w+12)=169 \Rightarrow 12 w+144=25 \Rightarrow 12 w=25$
$\Rightarrow w=\frac{25}{12}=2 \frac{1}{12} \mathrm{~cm}$

Click here to read the question again

Click here to return to the index

Question 5

Find the missing area in each of the following similar triangles.
a.

b.

Click here to read the solution to this question

Click here to return to the index

Solution to question 5

a.

Area of the larger triangle $=\frac{16}{9}$ area of the smaller triangle

$$
A=\frac{16}{9} \times 9=16 \mathrm{~cm}^{2}
$$

b.

Length ratio
7:8
Area ratio

$$
7^{2}: 8^{2}=49: 64
$$

Area of the smaller triangle $=\frac{49}{64}$ area of the larger triangle

$$
A=\frac{49}{64} \times 128=98 \mathrm{~cm}^{2}
$$

Click here to read the question again

Click here to return to the index

Question 6

Two spheres have radii of 3 cm and 5 cm respectively. If the volume of the smaller sphere is $27 \mathrm{~cm}^{3}$, find the volume of the larger sphere.

Click here to read the solution to this question

Click here to return to the index

Solution to question 6

Volume ratio $=\frac{125}{27}$

Length ratio 3:5
Area ratio
$3^{3}: 5^{3}=27: 125$

Volume of the larger sphere $=\frac{125}{27}$ volume of the smaller triangle $V=\frac{125}{27} \times 27=125 \mathrm{~cm}^{3}$

Click here to read the question again

Click here to return to the index

Question 7

Two similar jugs have volumes of $54 \mathrm{~cm}^{3}$ and $1024 \mathrm{~cm}^{3}$ respectively. If the height of the larger jug is 64 cm , find the height of the smaller jug.

Click here to read the solution to this question

Click here to return to the index

Solution to question 7

Volume ratio $54: 1024=27: 512$
Length ratio $\quad \sqrt[3]{27}: \sqrt[3]{512}=3: 8$
Height of the smaller jug $=\frac{3}{8}$ of the height of the larger jug.

$$
=\frac{3}{8} \times 64=24 \mathrm{~cm}^{3}
$$

Click here to read the question again
Click here to return to the index

Question 8

The surface areas of two similar model ships are $4 \mathrm{~m}^{2}$ and $25 \mathrm{~m}^{2}$ respectively.
a. If the length of the larger model is 75 m , find the length of the smaller model.
b. If the volume of the smaller model is $32 \mathrm{~m}^{3}$, find the volume of the larger model.

Click here to read the solution to this question
Click here to return to the index

Solution to question 8

Area ratio 4 : 2
a. Length ratio $=\sqrt{4}: \sqrt{25}=2: 5$

Length of the smaller model $=\frac{2}{5}$ of the larger model

$$
=\frac{2}{5} \times 75=30 \mathrm{~m}
$$

b. Volume ratio $=2^{3}: 5^{3}=8: 125$

Volume of the larger model $=\frac{125}{8}$ of the smaller model

$$
=\frac{125}{8} \times 32=500 \mathrm{~m}^{3}
$$

Click here to read the question again

Click here to return to the index

