I.G.C.S.E. Similarity

Index:

Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8

You can access the solutions from the end of each question

1. Find the sides marked with letters.

Click here to read the solution to this question

Consider $\triangle ABC$ and $\triangle DEF$.

Click here to read the question again

Find the sides marked with letters.

Click here to read the solution to this question

Consider $\triangle ABC$ and $\triangle DEF$.

Click here to read the question again

Find the sides marked with letters.

Click here to read the solution to this question

△ABE and △ACD are similar

We have $\hat{A} = \hat{A}$ (same angle in both triangles) $\hat{B} = \hat{C}$ (corresponding angles) $\hat{E} = \hat{D}$ (corresponding angles)

Hence
$$\frac{AD}{AC} = \frac{DL}{CD} = \frac{DA}{DA}$$
 $\frac{y}{y+3} = \frac{1}{6} = \frac{1}{4+x}$
 $\Rightarrow \frac{4}{6} = \frac{4}{4+x} \Rightarrow \frac{2}{3} = \frac{4}{4+x}$
 $\Rightarrow 2(4+x) = 12 \Rightarrow 8+2x = 12 \Rightarrow 2x = 4 \Rightarrow x = 2 \text{ cm}$
 $\Rightarrow \frac{4}{6} = \frac{y}{y+3} \Rightarrow 4(y+3) = 6y \Rightarrow 4y+12 = 6y \Rightarrow 12 = 2y \Rightarrow y = 6 \text{ cm}$

Click here to read the question again

Find the sides marked with letters.

Click here to read the solution to this question

 $\triangle WYZ$ and $\triangle ZYX$ are similar

We have $\hat{W} = \hat{Z}$

 $\hat{Y} = \hat{Y}$ (same angle in both triangles) $\hat{Z} = \hat{X}$ (both right-angles)

Hence $\frac{WY}{ZY} = \frac{YZ}{YX} = \frac{ZW}{XZ}$ $\frac{w+12}{13} = \frac{13}{12} = \frac{v}{5}$ $\Rightarrow \frac{13}{12} = \frac{v}{5} \Rightarrow 65 = 12v$ $\Rightarrow v = \frac{65}{12} = 5\frac{5}{12}$ cm $\Rightarrow \frac{w+12}{13} = \frac{13}{12} \Rightarrow 12(w+12) = 169 \Rightarrow 12w+144 = 25 \Rightarrow 12w = 25$ $\Rightarrow w = \frac{25}{12} = 2\frac{1}{12}$ cm

Click here to read the question again

Find the missing area in each of the following similar triangles.

Click here to read the solution to this question

Click here to read the question again

Two spheres have radii of 3 cm and 5 cm respectively. If the volume of the smaller sphere is 27 cm^3 , find the volume of the larger sphere.

Click here to read the solution to this question

Length ratio3:5Area ratio $3^3:5^3 = 27:125$

Volume of the larger sphere $=\frac{125}{27}$ volume of the smaller triangle

$$V = \frac{125}{27} \times 27 = 125 \,\mathrm{cm}^3$$

Click here to read the question again

Two similar jugs have volumes of 54 cm^3 and 1024 cm^3 respectively. If the height of the larger jug is 64 cm, find the height of the smaller jug.

Click here to read the solution to this question

Volume ratio	54 : 1024 = 27 : 512
Length ratio	³ √27 : ³ √512 = 3 : 8

Height of the smaller jug $=\frac{3}{8}$ of the height of the larger jug.

$$=\frac{3}{8}\times 64 = 24$$
 cm³

Click here to read the question again

The surface areas of two similar model ships are $4m^2$ and $25m^2$ respectively.

- **a.** If the length of the larger model is 75 m, find the length of the smaller model.
- **b.** If the volume of the smaller model is 32 m^3 , find the volume of the larger model.

Click here to read the solution to this question

Area ratio 4 : 2

- a. Length ratio $=\sqrt{4}:\sqrt{25}=2:5$ Length of the smaller model $=\frac{2}{5}$ of the larger model $=\frac{2}{5}\times75=30$ m
- **b.** Volume ratio = $2^3 : 5^3 = 8 : 125$ Volume of the larger model = $\frac{125}{8}$ of the smaller model = $\frac{125}{8} \times 32 = 500 \text{ m}^3$

Click here to read the question again