Important Equations in Physics for IGCSE course by Baaz Pathan

General Physics:

1	For constant motion:		'v' is the velocity in m/s. 's' is the						
		$12 = \frac{S}{-1}$	distance or displacement in meters						
		t t	and 't' is the time in sec						
2		12 — 11	and i is the time in sec						
2	For acceleration a	$a = \frac{v - u}{$	u is the initial velocity, v is the final						
		t	velocity and t is the time						
3	Graph: in velocity-time								
	graph the area under the	Area of a rectangular she	aped $graph = base \times height$						
	graph is the total	Area of triangular shapea	$l graph = \frac{1}{2} \times base \times height$						
	distance covered								
4	Weight is the force of		w is the weight in newton (N), m is						
	gravity and mass is the	$w = m \times q$	the mass in kg and g is acceleration						
	amount of matter	W III X g	due to gravity = 10 m/s^2						
5	Dansity 'o' in ka/m^3	m	mig the mass and Via the militia						
5	Density ρ in kg/m	$\rho = \frac{m}{m}$	m is the mass and v is the volume						
((p is the Fnoo)	- V	• .1 • 1 .•						
0	Force F in newtons (N)	$F = m \times a$	m is the mass and a is acceleration						
1	Terminal Velocity:	Weight of an object(downwa	rd) = air resistance (upwards)						
	falling with air resistance	implies no net force, therefore no a	cceleration, <u>constant velocity</u>						
8	Hooke's Law	E la vera	F is the force, x is the extension in						
		$F = \kappa \times \chi$	meters and k is the spring constant						
9	Moment of a force in N.m	moment of force = $F \times d$	d is the perpendicular distance from						
	(also turning effect)		the pivot and F is the force						
10	I aw of moment or	Total clockwise moment –	total anticlockwise moment						
10	aquilibrium								
11	Conditions of Equilibrium	$=> r_1 \times a_1 = r_2 \times a_2$							
11	Conditions of Equilibrium	Net force on x-axis=zero, net force	on y-axis= zero, net moment=zero						
11	Work done W joules (J)	$W = F \times d$	<i>F</i> is the force and <i>d</i> is the distance						
			covered by an object same direction						
12	Kinetic Energy E_k in	$F_{1} = \frac{1}{2} \times m \times m^{2}$	m is the mass(kg) and v is the						
	joules (J)	$L_k = \frac{1}{2} \times m \times v$	velocity (m/s)						
13	Potential Energy ΔE_p in	$\Delta E_p = m \times g \times \Delta h$	m is mass (kg) and g is gravity and						
	joules (J)		Δh is the height from the ground						
14	Law of conservation of	Loss of $E_n = aain of E_k$							
	energy:	1							
		$m \times g \times h = \frac{1}{2} \times m \times v^2$							
15	Power in watts (W)	work done	Power is the rate of doing work or						
15	1 Ower in waits (W)	$P = \frac{workwork}{work}$	rate of transferring the energy from						
		time t aken Energy ransfer	rate of transferring the energy from						
		$P = \frac{E \pi e r g y T \pi r s y e r}{1}$	one form to another						
16	T- (2)	time taken	1						
10	Efficiency:	$Efficiency = \frac{usefu}{usefu}$	$\frac{1}{2} \frac{0}{2} \frac{1}{2} \frac{1}$						
		tota	l energy input						
17	Pressure p in pascal (Pa)	F	F is the force in newton (N) and A is						
		$p = \frac{1}{A}$	the area in m^2						
18	Pressure p due to liquid		ρ is the density in kg/m ³ . h is the						
		$n = o \times a \times h$	height or denth of liquid in meters						
		p p ~ g ~ h	and g is the gravity						
10	Atmospheric pressure	P-760mmHg - 76cm Hg -1.01v10	P_{a}						
20	Energy source	renewable can be reused	non renewable cannot be reused						
20	Lnergy source	Induced active and device under the	Chaming and an approximation of the reased						
		nyaroelectric eg aam, waterfall	Cnemical energy eg petrol, gas						
		Geothermal eg from earth's rock	Nuclear fission eg from uranium						
		Solar eg with solar cell							
		Wind energy eg wind power station							
		Tidal/wave energy eg tide in ocean							

Thermal Physics:

1	Boyle's law: Pressure and volume	pV=consta		nt	p_1 and p_2 are the two pressures in Pa					
	are inversely proportional $p \propto V$	$p_1 \times V_1 = p_2 \times T$		V_2	and V_1 and V_2 are the two volumes in m^3					
2	Thermal Expansion (Linear)	4	$L = \alpha \times L_{\alpha}$	$_{v_o} \times \Delta \theta$						
		L_o is the c	original ler	ngth in meters,						
		$\Delta \theta$ is the	$\Delta \theta$ is the change in temperature in °C,							
		ΔL is the	change in	length	in meters $(L_l - L_o)$ and					
		α is the li	inear expa	nsivity	vity of the material					
3	Thermal Expansion (Cubical)	437	V 40	V_o is the original volume in m^3 ,						
	- · · ·	$\Delta \mathbf{v} = \gamma$	νο Δθ	$\Delta \theta$ is the change in temperature in ${}^{o}C, \Delta V$ is						
		γ =	3α	the change in volume in m^3 (V_1 - V_o) and						
				γ is the cubical expansivity of the material.						
4	Charle's Law:	V	a at a st	V is t	V is the volume in m^3 and T is the temperature					
	Volume is directly proportional to	$\frac{1}{T} = cor$	nstant	in kel	<i>vin</i> (<i>K</i>).					
	absolute temperature	V_1	V_2							
	$V \propto T$	T_1	- T ₂							
5	Pressure Law:	$\frac{p}{-} = co$	nstant	p is th	ne pressure in Pa and T is the					
	Pressure of gas is directly	T_{n_1}	no	tempe	erature in Kelvin (K).					
	proportional to the absolute	$\frac{P_1}{T} =$	$=\frac{P_2}{T}$							
	<i>temperature</i> $p \propto T$	<i>I</i> ₁	<i>I</i> ₂							
6	Gas Law (combining above laws)	$\frac{p_1 v_1}{2} =$	$\frac{p_2v_2}{2}$	In the	ermal physics the symbol θ is used for					
	$\frac{pv}{r} = constant$	$T_1 \qquad T_2$		ceisius scale and 1 is used for kelvin scale.						
7	T Specific Heat Canacity:		0	c is the specific heat canacity in $I/(ka^{0}C)$						
/	Amount of heat energy required to	C = -	<u> </u>	O is the heat energy supplied in joules (I)						
	raise the temperature of 1 kg mass	m	×Δθ	\mathcal{L} is the mass in kg and $\Delta \theta$ is the change in						
	by 1°C.			tempe	erature					
8	Thermal Capacity: amount of heat	Thermal	capacity=1	$m \times c$	The unit of thermal capacity is $J^{\circ}C$.					
_	require to raise the temperature of	T 1		Q	······································					
	a substance of any mass by $1^{\circ}C$	$1 \text{ nermal capacity} = \frac{1}{\Delta \theta}$								
9	Specific latent heat of fusion	, Q	L_f is the s	specific	c latent heat of fusion in J/kg or J/g,					
	(from solid to liquid)	$L_f - \overline{m}$	Q is the t	total heat in joules (J),						
		m is the mass of liquid change from solid in kg or g.								
10	Specific latent heat of vaporization	$\int_{I} \frac{Q}{Q} \int_{V} L_{v}$ is the specific latent heat of vaporization in J/kg or								
	(from liquid to vapour)	$u^{\nu} = m$	J/g, Q is	the tot	al heat in joules (J), m is the mass of					
11		x 1.1	vapour ci	hange	from liquid in kg or g.					
11	Thermal or heat transfer	$In \ solid =$	conductio	on						
		in liquid	una gas =	conve	cuon and also convection current					
		(I In vacuus	noi muller n – radiat	goes u ion	p una cola maller comes aown)					
12	Emitters and Radiators	Dull blac	n – ruuidi k surface -		emitter good radiator had reflector					
12	Emiliers and Kadidiors	Duil Diack surface = good emitter, good radiator, bad reflector Bright shine surface = poor emitter poor radiator, cood reflector								
13	Another name for heat radiation	Dright shiny surjace = poor emitter, poor radiator, good reflector Infrared radiation or radiant heat								
14	Melting point	Change s	olid into li	iauid. 4	energy weaken the molecular bond, no					
		change in	temperati	ure. m	plecules move around each other					
15	Boiling point	Change l	iquid into	gas, en	ergy break molecular bond and					
_	01	molecules escape the liquid, average kinetic energy increase. no								
		change in temperature, molecule are free to move								
16	Condensation	Change gas to liquid, energy release, bonds become stronger								
17	Solidification	Change liquid to solid, energy release bonds become very strong								
18	Evaporation	Change l	iquid to ga	is at ar	y temperature, temperature of liquid					
		decreases, happens only at the surface								

Waves, light and sound:

1	Wave motion	ı	Tran	Transfer of energy from one place to another											
2	Frequency f		Num	Number of cycle or waves in one second, unit hertz (Hz)											
3	Wavelength .	λ	Leng	Length of one complete waves, unit, meters (m)											
4	Amplitude a		Max	Maximum displacement of medium from its mean position, meters											
5	wavefront		A lin	A line on which the disturbance of all the particles are at same point from											
	-		the c	the central position eg a crest of a wave is a wavefront											
6	Wave equation	on 1	Ĩ	$v = f \times \lambda$ v is the speed of wave in m/s, f is the frequency in									quency in		
				(hertz) Hz, λ is the wavelength in meters											
7	Wave equation	on 2		$f = \frac{1}{T}$ T is the time period of wave in seconds											
8	Movement of	f particles	Long	Longitudinal waves=> back and forth parallel to the direction of the								n of the waves			
-	of the medium	m	Tran	isvers	e wai	ves = >	per	rpenc	licular to	the a	directio	on of th	ie wa	ves	
9	Law of reflec	ction				Ang	le o	of inc	idence i =	ang	gel of re	eflectio	on		
10			F 1	• 7 .	. 1		- 1	an	$gle \iota^0 =$	ang	ler	1	1		
10	Refraction		From l	ighter	' to de	enser n abtan y	nedi	ит –	→ light be	nd to	wards t	he nor	mal	.1	
11	P ofractive in	dar n	r rom u	ienser sin	<u>10 iiş</u> n 7 i	gnier n	neai	<i>ium</i> –	→ ugni be	na ar	way jroi ped of	liaht	iorma in ai	<u>n</u> ir or nacuum	
11	(Refractive in	ndex	n _{glass}	=	cin	ir or ve	acui	um	n _{glass} =	$=\frac{5p}{-}$		dof	li aht	in alass	
	has not units)			SIII	∠' gla	SS				spee	u oj i	uynı	in glass	
12	Diffraction	/	Bendir	ig of v	vaves	s arou	nd t	the ed	lges of a	hard	surface	е			
13	Dispersion		Separa	ition of	of dif	ferent	way	ves a	ccording	to co	olours o	r freq	uency	for example	
	1		by usir	ıg pri	sm sm				U			5 1	5	5 1	
14	Image from a	a plane mir	rror Virtual, upright, same size and laterally inverted and same distance from												
15	Imaga from	a conver la		ne mi Whon	close	insiae	al	onla	raa unria	ht					
15	Image from t	i convex iei	ns when close: virtual, enlarge, upright When fan neal small upride dour												
16	Image from	a concava l	ans Virtual upright small												
17	Critical angl	e P	UIIS ,	Nhen	liøht	goes t	fron	n den	ser to lig	hter	mediun	ı the i	ncide	nt angle at	
			v	vhich	the r	eflecte	ed a	ingle	is 90°, is	calle	ed critic	cal ang	gle.		
18	Total interna	l reflection	ı V	When nside	light the s	goes f ame n	fron 1edi	n den ium c	ser to lig alled (TL	hter i R) eg	medium optica	1, the 1 1 fihrø	refrac	ted ray bend	
19	Electromagn	etic Spectr	um: tro	avel ir	i vaci	<u>иит. (</u>	neai nsci	illatin	g electric	and	l magne	tic fie	lds		
17	$\leftarrow \lambda$ (decrea	se) and f (ii	ncreas	e)					s ciccii ic	l (inc	reases) and f	(deci	$rease) \rightarrow$	
	Gammas	X-Rays	U	Ira vi	olet	Vi	sibl	le	Infrare	ed	Mic	icro Ra		Radio waves	
	rays	5		rays		(ligh	t) r	ays	rays		way	waves			
20	Gamma rays	: for killing	g cance	er cell	s	Visik	ole l	light:	light ray	s, ma	onochro	omatic	mear	ns one colour	
	X-rays: in m	edicine				Infra	ired	l: ren	iote conti	rols,	treatme	ent of r	nusci	ılar pain	
	UV rays: for	sun tan an	d steri	lizatic	m	Micr	•0 w	vaves	: internat	iona	l comm	unicat	tion, n	nobile phones	
	of medical in	struments				Radi	o w	vaves.	[•] radio ar	id tel	levision	comn	unic	ation	
21	Colours of vi	isible light	Vic	olet	<u>I</u> nc	ligo		<u>B</u> lue	<u>G</u> reen	<u>Y</u>	ellow	<u>O</u> rai	nge	\underline{Red}	
- 22	VIBGYO R W	vavelengths	3 4×1	$\frac{0^{n}m}{\cdot}$	2 1	08 /								/×10 ⁺ m	
22	Speed of ligh	t waves or	I	n aır:	3×10	$0^{\circ}m/s$			In wate	er: 8/-			In	glass:	
22	light ways	enc waves	<i>2.25×10 m/s 2×10⁻m/s</i>									10 11/5			
23	Light wave	aro	narticles of the medium some close to each other a computeries												
24	longitudinal	waves	pur	ticles	of th	e meu o mod	ium ium	i com i mov	e close i	v euci	efaction	— со n	mpres	sion	
25	Echo	Waves	$2 \times d$ v is the speed of sound waves												
20	Leno		$v = \frac{1}{t}$ d is the distance in meters between source and the												
			reflection surface and t is the time for echo							r echo					
26	Properties of	f sound	Pite	ch is s	imila	ir to th	ie fi	reque	ncy of the	e wa	ve		5		
	waves		Loudness is similar to the amplitude of the wave												
27	Speed of sou	nd waves		I	Air :			W	'ater:	iter: Concrete : Sta				Steel:	
				330-340 m/s				14	00 m/s	5000 m/s			6000–7000 m/s		

Electricity and magnetism:

1	Ferrous Materials	Attracted by magnet and can be	iron, steel, nickel and cobalt							
		magnetized	(iron temporary and steel permanent)							
2	Non-ferrous materials	Not attracted by magnet and cannot be magnetized	copper, silver, aluminum, wood, glass							
3	Electric field	The space or region around a charg Direction is outward from positive c	e where a unit charge experience force harge and inward into negative charge							
4	Electric field intensity	Amount force exerted by the	E is the electric field intensity in N/C							
		charge on a unit charge (q) placed	F - F							
		at a point in the field	$L = \frac{1}{q}$							
5	Current (I): Rate of flow	$I = \frac{Q}{Q}$	I is the current in amperes (A),							
	of charges in conductor	r = t	Q is the charge in coulombs (C)							
-	~		t is the time in seconds (s)							
6	Current	In circuits the current always choose	e the easiest path							
7	Ohms law	Voltage across the resistor is	V is the voltage in volts (V),							
		directly proportional to current,	I is the current in amperes (A) and (A)							
		$V \ltimes I$ provided if the physical	<i>K</i> is resistance in onms (52)							
		conditions remains same $\frac{1}{I} = R$								
8	Voltage (potential	Energy per unit charge	q is the charge in coulombs (C),							
	difference)	$V = \frac{Ene \ gy}{E} = \frac{E}{E}$	V is the voltage in volts (V)							
		c ha r e q	Energy is in joules (J)							
9	E.M.F.	<i>E.M.F.</i> = lost volts inside the power source + terminal potential difference								
	Electromotive force	EMF=Ir+IR								
10	Resistance and resistivity	$R = \rho \frac{L}{-}$	<i>K</i> is the resistance a resistor,							
			L is the length of a resistor in meters							
		ρ is the resistivity of resistor in Ω .m	A is the area of cross-section of a resistor in m^2							
11	Cinquit	In garing aircuit , the aurout stars	resistor in m							
11	Circuit	In series circuit \rightarrow the current stays In parallel circuit \rightarrow the voltage star	ine same and vollage alviaes ws the same and current divides							
12	Resistance in series	$\frac{1}{R} = R_1 + R_2 + R_2$								
13	Resistance in parallel	1 1 1 1	- R, R ₁ , R ₂ and R ₃ are resistances of							
		$\overline{R} = \overline{R_1} + \overline{R_2} + \overline{R_3}$	resistors in ohms							
14	Potential divider or	$V_1 R_1$								
	potentiometer	=								
15	Potential divider	R_2	R_1							
		$V_2 = \left(\frac{1}{R_1 + R_2}\right) \times V$	$V_1 = (\frac{1}{R_1 + R_2}) \times V$							
16	Power	$P = I \times V$ $P = I^2 \times R$ $P = \frac{V^2}{R}$	P is the power in watts (W)							
17	Power	Energy	The unit of energy is joules (J)							
		P =								
18	Diode	Semiconductor device current pass only in one direction, rectifier								
19	Transistor	Semiconductor device works as a switch, collector, base, emitter								
20	Light dependent resistor	LED resistor depend upon light, brightness increases the resistance decrease								
21	Thermistor	Resistor depend upon temperature, temperature increase resistance decrease								
22	Capacitor	Parallel conductor with insulator in between to store charges								
23	Relay	Electromagnetic switching device								
24	Fleming's RH or LH rule	$\underbrace{hu\underline{M}b}_{Eirst finger} \underbrace{seCond finger}_{Eirst finger}$								
25	T	Direction of motion Direction of magnetic field Direction of current								
23	1 ransjormer	$\frac{p}{W} = \frac{p}{w}$ $\frac{v_p}{v_p}$ una v_s are the voltages; n_p and n_s are the no of turns								
		$\mathbf{v}_{s} \mathbf{n}_{s}$ in primary and	i seconuur y cons							

26	Transformer	$P_p P_s$				Power in primary coil =Power in secondary coil										
		$I_p \times V_p = I_s \times$		$\langle V_s$	I_p and I_s the currents in primary and secondary coil											
		$\frac{p}{V_s} = \frac{1}{I_p}$														
27	E.M induction	Emf	or ci	ırrent	is in	duced in a conductor when it cuts the magnetic field lines										
28	a.c. generator	Produce current, use Fleming's right hand rule														
29	d.c. motor	Consume current, use Fleming's left hand rule														
30	Logic Gates	AN	ID G	ate	0	R Ga	te	NOT Gate		NAND Gate			NOR Gate			
		1	2	out	1	2	out	in	out	1	2	out	1	2	out	
		0	0	0	0	0	0	0	1	0	0	1	0	0	1	
		0	1	0	0	1	1	1	0	0	1	1	0	1	0	
		1	0	0	1	0	1			1	0	1	1	0	0	
		1	1	1	1	1	1			1	1	0	1	1	0	
31	Cathode rays	Stream of electrons emitted from heated metal (cathode). This process is														
		called thermionic emission.														
32	CRO	Horizontal or y-plates for vertical movement of electron beam														
		Timebase or x-plates for horizontal movement														

Atomic Physics:

1	Alpha particles	Double positive charge	
	a-particles	Helium nucleus	
		Stopped by paper	
		Highest ionization potential	
2	Beta-particles	Single negative charge	
	β -particles	Fast moving electrons	
	, -	Stopped by aluminum	
		Less ionization potential	
3	Gamma-particles	No charge	
	γ-rays	Electromagnetic radiation	
		Only stopped by thick a sheet of lead	
		Least ionization potential	
4	Half-life	Time in which the activity or mass of substance be	comes half
5	Atomic symbol	Av	A is the total no of
		$\frac{1}{Z}X$	protons and neutrons
			Z is the total no of protons
6	Isotopes	Same number of protons but different number of	
		neutrons	