Important Equations in Physics for IGCSE course by Baaz Pathan

General Physics:

1	For constant motion:	$v=\frac{s}{t}$	' v ' is the velocity in m / s, ' s ' is the distance or displacement in meters and ' t ' is the time in sec
2	For acceleration ' a '	$a=\frac{v-u}{t}$	u is the initial velocity, v is the final velocity and tis the time
3	Graph: in velocity-time graph the area under the graph is the total distance covered	Area of a rectangular shaped graph $=$ base \times height Area of triangular shaped graph $=1 / 2 \times$ base \times height	
4	Weight is the force of gravity and mass is the amount of matter	$w=m \times g$	w is the weight in newton (N), m is the mass in kg and g is acceleration due to gravity $=10 \mathrm{~m} / \mathrm{s}^{2}$
5	Density ' ρ ' in $\mathrm{kg} / \mathrm{m}^{3}$ (ρ is the rhoo)	$\rho=\frac{m}{V}$	m is the mass and V is the volume
6	Force F in newtons (N)	$F=m \times a$	m is the mass and a is acceleration
7	Terminal Velocity: falling with air resistance	Weight of an object(downward) $=$ air resistance (upwards) implies no net force, therefore no acceleration, constant velocity	
8	Hooke's Law	$F=k \times x$	F is the force, x is the extension in meters and k is the spring constant
9	Moment of a force in N.m (also turning effect)	moment of force $=F \times d$	d is the perpendicular distance from the pivot and F is the force
10	Law of moment or equilibrium	Total clockwise moment $=$ total anticlockwise moment$\Rightarrow F_{1} \times d_{1}=F_{2} \times d_{2}$	
11	Conditions of Equilibrium	Net force on x-axis=zero, net force on y-axis $=$ zero, net moment=zero	
11	Work done W joules (J)	$W=F \times d$	F is the force and d is the distance covered by an object same direction
12	Kinetic Energy E_{k} in joules (J)	$E_{k}=\frac{1}{2} \times m \times v^{2}$	m is the mass (kg) and v is the velocity (m / s)
13	Potential Energy ΔE_{p} in joules (J)	$\Delta E_{p}=m \times g \times \Delta h$	m is mass (kg) and g is gravity and Δh is the height from the ground
14	Law of conservation of energy:	$\begin{aligned} & \text { Loss of } E_{p}=\text { gain of } E_{k} \\ & m \times g \times h=\frac{1}{2} \times m \times v^{2} \end{aligned}$	
15	Power in watts (W)	$\begin{gathered} P=\frac{\text { work done }}{\text { time taken }} \\ P=\frac{\text { Energy ransfer }}{\text { time taken }} \end{gathered}$	Power is the rate of doing work or rate of transferring the energy from one form to another
16	Efficiency:	$\text { Efficiency }=\frac{\text { useful }}{\text { total energy input }} \times 100$	
17	Pressure p in pascal (Pa)	$p=\frac{F}{A}$	F is the force in newton (N) and A is the area in m^{2}
18	Pressure p due to liquid	$p=\rho \times g \times h$	ρ is the density in $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{~h}$ is the height or depth of liquid in meters and g is the gravity
19	Atmospheric pressure	$P=760 \mathrm{mmHg}=76 \mathrm{~cm} \mathrm{Hg}=1.01 \times 10^{5} \mathrm{~Pa}$	
20	Energy source	renewable can be reused	non-renewable cannot be reused
		Hydroelectric eg dam, waterfall	Chemical energy eg petrol, gas
		Geothermal eg from earth's rock	Nuclear fission eg from uranium
		Solar eg with solar cell	
		Wind energy eg wind power station	
		Tidal/wave energy eg tide in ocean	

Thermal Physics:

1	Boyle's law: Pressure and volume are inversely proportional $p \propto V$	$\begin{array}{r} p V=\text { constant } \\ p_{1} \times V_{1}=p_{2} \times V_{2} \end{array}$		p_{1} and p_{2} are the two pressures in Pa and V_{1} and V_{2} are the two volumes in m^{3}
2	Thermal Expansion (Linear)	$\Delta L=\alpha \times L_{o} \times \Delta \theta$ L_{o} is the original length in meters, $\Delta \theta$ is the change in temperature in ${ }^{\circ} \mathrm{C}$, ΔL is the change in length in meters $\left(L_{l^{-}} L_{o}\right)$ and α is the linear expansivity of the material		
3	Thermal Expansion (Cubical)	$\begin{gathered} \Delta \mathrm{V}=\gamma \operatorname{Vo} \Delta \theta \\ \gamma=3 \alpha \end{gathered}$	V_{o} is the original volume in m^{3}, $\Delta \theta$ is the change in temperature in ${ }^{\circ} \mathrm{C}, \Delta V$ is the change in volume in $\mathrm{m}^{3}\left(V_{I^{-}} V_{o}\right)$ and γ is the cubical expansivity of the material.	
4	Charle's Law: Volume is directly proportional to absolute temperature $V \propto T$	$\begin{gathered} \frac{V}{T}=\text { constant } \\ \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \end{gathered}$	V is the volume in m^{3} and T is the temperature in kelvin (K).	
5	Pressure Law: Pressure of gas is directly proportional to the absolute temperature $p \propto T$	$\begin{gathered} \frac{p}{T}=\text { constant } \\ \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \end{gathered}$	p is the pressure in Pa and T is the temperature in Kelvin (K).	
6	Gas Law (combining above laws) $\frac{p V}{T}=\text { constant }$	$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$	In thermal physics the symbol θ is used for celsius scale and T is used for kelvin scale.	
7	Specific Heat Capacity: Amount of heat energy required to raise the temperature of 1 kg mass by $I^{\circ} \mathrm{C}$.	$c=\frac{Q}{m \times \Delta \theta}$	c is the specific heat capacity in $J /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$, Q is the heat energy supplied in joules (J), m is the mass in kg and $\Delta \theta$ is the change in temperature	
8	Thermal Capacity: amount of heat require to raise the temperature of a substance of any mass by $1^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Thermal capacity }=m \times c \\ & \text { Thermal capacity }=\frac{Q}{\Delta \theta} \end{aligned}$		The unit of thermal capacity is $J^{\rho} \mathrm{C}$.
9	Specific latent heat of fusion (from solid to liquid)	$L_{f}=\frac{Q}{m} \left\lvert\, \begin{aligned} & L_{f} \text { is the specific latent heat of fusion in } \mathrm{J} / \mathrm{kg} \text { or } \mathrm{J} / \mathrm{g}, \\ & Q \text { is the total heat in joules }(\mathrm{J}), \\ & m \text { is the mass of liquid change from solid in } \mathrm{kg} \text { or } \mathrm{g} . \end{aligned}\right.$		
10	Specific latent heat of vaporization (from liquid to vapour)	$\begin{array}{l\|l} L_{v}=\frac{Q}{m} & \begin{array}{l} L_{v} \text { is the specific latent heat of vaporization in } \mathrm{J} / \mathrm{kg} \text { or } \\ \mathrm{J} / \mathrm{g}, Q \text { is the total heat in joules }(J), m \text { is the mass of } \\ \text { vapour change from liquid in } \mathrm{kg} \text { or } \mathrm{g} . \end{array} \end{array}$		
11	Thermal or heat transfer	In solid = conduction In liquid and gas $=$ convection and also convection current (hot matter goes up and cold matter comes down) In vacuum $=$ radiation		
12	Emitters and Radiators	Dull black surface = good emitter, good radiator, bad reflector Bright shiny surface $=$ poor emitter, poor radiator, good reflector		
13	Another name for heat radiation	Infrared radiation or radiant heat		
14	Melting point	Change solid into liquid, energy weaken the molecular bond, no change in temperature, molecules move around each other		
15	Boiling point	Change liquid into gas, energy break molecular bond and molecules escape the liquid, average kinetic energy increase, no change in temperature, molecule are free to move		
16	Condensation	Change gas to liquid, energy release, bonds become stronger		
17	Solidification	Change liquid to solid, energy release bonds become very strong		
18	Evaporation	Change liquid to gas at any temperature, temperature of liquid decreases, happens only at the surface		

Waves, light and sound:

1	Wave motion		Transfer of energy from one place to another							
2	Frequency f		Number of cycle or waves in one second, unit hertz (Hz)							
3	Wavelength λ		Length of one complete waves, unit, meters (m)							
4	Amplitude a		Maximum displacement of medium from its mean position, meters							
5	wavefront		A line on which the disturbance of all the particles are at same point from the central position eg a crest of a wave is a wavefront							
6	Wave equation 1		$v=f \times \lambda$		v is the speed of wave in m / s, f is the frequency in (hertz) $H z, \lambda$ is the wavelength in meters					
7	Wave equation 2		$f=\frac{1}{T}$		T is the time period of wave in seconds					
8	Movement of particles of the medium		Longitudinal waves $=>$ back and forth parallel to the direction of the waves Transverse waves=> perpendicular to the direction of the waves							
9	Law of reflection		$\begin{gathered} \text { Angle of incidence } i=\text { angel of reflection } \\ \text { angle } i^{o}=\text { angle } r^{o} \end{gathered}$							
10	Refraction		From lighter to denser medium \rightarrow light bend towards the normal From denser to lighter medium \rightarrow light bend away from the normal							
11	Refractive index n (Refractive index has not units)		$n_{\text {glass }}=\frac{\sin \angle i_{\text {air or vacuum }}}{\sin \angle r_{\text {glass }}}$			$n_{\text {glass }}=\frac{\text { speed of light in air or vacuum }}{\text { speed of light in glass }}$				
12	Diffraction		Bending of waves around the edges of a hard surface							
13	Dispersion		Separation of different waves according to colours or frequency for example by using prism							
14	Image from a plane mirror		Virtual, upright, same size and laterally inverted and same distance from the mirror inside							
15	Image from a convex lens		When close: virtual, enlarge, upright When far: real, small, upside down							
16	Image from a concave lens		s Virtual, upright, small							
17	Critical angle		When light goes from denser to lighter medium, the incident angle at which the reflected angle is 90°, is called critical angle.							
18	Total internal reflection (TIR)		When light goes from denser to lighter medium, the refracted ray bend inside the same medium called (TIR) eg optical fibre							
19	Electromagnetic Spectrum: travel in vacuum, oscillating electric and magnetic fields $\leftarrow \lambda$ (decrease) andf(increase) $\quad \lambda$ (increases) and f(decrease) \rightarrow									
	Gammas rays	X-Rays	Ulra violet rays	Visible (light) rays		Infrared rays	Micro waves		Radio waves	
20	Gamma rays: for killing cancer cells X-rays: in medicine UV rays: for sun tan and sterilization of medical instruments			Visible light: light rays, monochromatic means one colour Infrared: remote controls, treatment of muscular pain Micro waves: international communication, mobile phones Radio waves: radio and television communication						
21	Colours of visible light VIBGYO R wavelengths		Violet $4 \times 10^{-7} \mathrm{~m}$ Indigo		Blue	e ${ }^{\text {Green }}$	$\underline{\text { Yellow }}$	$\underline{\text { Orange }}$		$\begin{gathered} \frac{\operatorname{Red}}{7 \times 10^{-7} \mathrm{~m}} \end{gathered}$
22	Speed of light waves or electromagnetic waves		In air: $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$		In water:$2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$			$\begin{aligned} & \text { In glass: } \\ & 2 \times 10^{8} \mathrm{~m} / \mathrm{s} \end{aligned}$		
23	Light wave		Transverse electromagnetic waves							
24	Sound wave are longitudinal waves		particles of the medium come close to each other \rightarrow compression particles of the medium move away \rightarrow rarefaction							
25	Echo		$v=\frac{2 \times d}{t}$			v is the speed of sound waves, d is the distance in meters between source and the reflection surface and t is the time for echo				
26	Properties of sound waves		Pitch is similar to the frequency of the wave Loudness is similar to the amplitude of the wave							
27	Speed of sound waves		$\begin{gathered} \hline \text { Air: } \\ 330-340 \mathrm{~m} / \mathrm{s} \end{gathered}$		Water: $1400 \mathrm{~m} / \mathrm{s}$		$\begin{gathered} \text { Concrete : } \\ 5000 \mathrm{~m} / \mathrm{s} \end{gathered}$			Steel: -7000 m/s

Electricity and magnetism:

1	Ferrous Materials	Attracted by magnet and can be magnetized		iron, steel, nickel and cobalt (iron temporary and steel permanent)	
2	Non-ferrous materials	Not attracted by magnet and cannot be magnetized		copper, silver, aluminum, wood, glass	
3	Electric field	The space or region around a charge where a unit charge experience force Direction is outward from positive charge and inward into negative charge			
4	Electric field intensity	Amount force exerted by the charge on a unit charge (q) placed at a point in the field		E is the electric field intensity in $N / C$$E=\frac{F}{q}$	
5	Current (I): Rate of flow of charges in conductor	$I=\frac{Q}{t}$		I is the current in amperes (A), Q is the charge in coulombs (C) t is the time in seconds (s)	
6	Current	In circuits the current always choose the easiest path			
7	Ohms law	Voltage across the resistor is directly proportional to current, $V \propto I$ provided if the physical conditions remains same $\frac{V}{I}=R$		V is the voltage in volts (V), I is the current in amperes (A) and R is resistance in ohms (Ω)	
8	Voltage (potential difference)	Energy per unit charge$V=\frac{\text { Ene } g y}{\text { char } e}=\frac{E}{q}$		q is the charge in coulombs (C), V is the voltage in volts (V) Energy is in joules (J)	
9	E.M.F. Electromotive force	E.M.F. $=$ lost volts inside the power source + terminal potential difference $E M F=I r+I R$			
10	Resistance and resistivity	$R=\rho \frac{L}{A}$ ρ is the resistivity of resistor in $\Omega . m$		R is the resistance a resistor, L is the length of a resistor in meters A is the area of cross-section of a resistor in m^{2}	
11	Circuit	In series circuit \rightarrow the current stays the same and voltage divides In parallel circuit \rightarrow the voltage stays the same and current divides			
12	Resistance in series	$R=R_{1}+R_{2}+R_{3}$		R, R_{1}, R_{2} and R_{3} are resistances of resistors in ohms	
13	Resistance in parallel	$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{2}+\frac{1}{R_{3}}$			
14	Potential divider or potentiometer	$\frac{V_{1}}{2}=\frac{R_{1}}{}$			
15	Potential divider	$V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \times V$		$V_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \times V$	
16	Power	$P=I \times V$	友 $\quad P=\frac{V^{2}}{R}$	P is the power in watts (W)	
17	Power	$P=\frac{\text { Energy }}{\text { time }}$		The unit of energy is joules (J)	
18	Diode	Semiconductor device... current pass only in one direction, rectifier			
19	Transistor	Semiconductor device works as a switch, collector, base, emitter			
20	Light dependent resistor	LED resistor depend upon light, brightness increases the resistance decrease			
21	Thermistor	Resistor depend upon temperature, temperature increase resistance decrease			
22	Capacitor	Parallel conductor with insulator in between to store charges			
23	Relay	Electromagnetic switching device			
24	Fleming's RH or LH rule	thuMb Direction of motion	First finger Direction of magnetic field		seCond finger Direction of current
25	Transformer	$\frac{p}{\boldsymbol{V}_{s}}=\frac{p}{\boldsymbol{n}_{s}}$	V_{p} and V_{s} are in primary and	he voltages; n_{p} secondary coils	$d n_{s}$ are the no of turns

26	Transformer	$\begin{aligned} P_{p} & P_{s} \\ I_{p} \times \boldsymbol{V}_{p} & =I_{s} \times V_{s} \\ \frac{p}{V_{s}} & =\frac{}{I_{p}} \end{aligned}$			Power in primary coil $=$ Power in secondary coil I_{p} and I_{s} the currents in primary and secondary coil									
27	E.M induction	Emf or current is induced in a conductor when it cuts the magnetic field lines												
28	a.c. generator	Produce current, use Fleming's right hand rule												
29	d.c. motor	Consume current, use Fleming's left hand rule												
30	Logic Gates	AND Gate		OR Gate			NOT Gate		NAND Gate			NOR Gate		
		2	out	1	2	out	in	out	1	2	out	1	,	out
		0 0	0	0	0	0	0	1	0	0	1	0	0	1
		0	0	0	1	1	1	0	0	1	1	0	1	0
		$1{ }^{1}$	0	1	0	1			1	0	1	1	0	0
		111	1	1	1	1			1	1	0	1	1	0
31	Cathode rays	Stream of electrons emitted from heated metal (cathode). This process is called thermionic emission.												
32	CRO	Horizontal or y-plates for vertical movement of electron beam Timebase or x-plates for horizontal movement												

Atomic Physics:

1	Alpha particles α-particles	Double positive charge Helium nucleus Stopped by paper Highest ionization potential	
2	Beta-particles β-particles	Single negative charge Fast moving electrons Stopped by aluminum Less ionization potential	
3	Gamma-particles γ-rays	No charge Electromagnetic radiation Only stopped by thick a sheet of lead Least ionization potential	
4	Half-life	Time in which the activity or mass of substance b	comes half
5	Atomic symbol	${ }_{Z}^{A} X$	A is the total no of protons and neutrons Z is the total no of protons
6	Isotopes	Same number of protons but different number of neutrons	

