# I.G.C.S.E. Matrices and Transformations

### Index:

Please click on the question number you want

| Question 1 | Question 2 |
|------------|------------|
| Question 3 | Question 4 |
| Question 5 | Question 6 |

You can access the solutions from the end of each question

Draw *x*- and *y*- axis with values from -10 to 10. Draw the following triangle with vertices A(3, 2), B(5, 2) and C(5, 4). Draw the image of *ABC* under the following transformations **clearly labelling** the vertices in each case. Write down the coordinates of the vertices in each case.

- **a.** Enlargement scale factor 2, centre (0, 0). Label the image  $A_1, B_1, C_1$ .
- **b.** Reflection in the *y*-axis. Label the image  $A_2, B_2, C_2$ .
- **c.** Rotation 270° about (0, 0). Label the image  $A_3, B_3, C_3$ .
- **d.** Enlargement scale factor -1, centre (0, 0). Label the image  $A_4$ ,  $B_4$ ,  $C_4$ .
- **e.** Translation  $\begin{pmatrix} -12 \\ -12 \end{pmatrix}$ . Label the image  $A_5, B_5, C_5$ .
- **f.** Reflection in the line y = -x. Label the image  $A_6, B_6, C_6$ .
- **g.** Enlargement scale factor -2, centre (0, 3). Label the image  $A_7, B_7, C_7$ .
- **h.** Rotation 90° about the origin. Label the image  $A_8, B_8, C_8$ .

### Click here to read the solution to this question



### Click here to return to question 2

- **a.**  $A_1, B_1, C_1$  is an enlargement scale factor 2, centre (0, 0).  $A_1$  (6, 1),  $B_1$  (10, 4),  $C_1$  (10, 8).
- **b.**  $A_2, B_2, C_2$  is a reflection in the y-axis.  $A_2$  (-3, 2),  $B_2$  (-5, 2),  $C_2$  (-5, 4).
- **c.**  $A_3, B_3, C_3$  is a rotation 270° (anticlockwise) about (0, 0).  $A_3$  (2, -3),  $B_3$  (2, -5),  $C_3$  (4, -5).

# Click here to continue with solution or go to next page

**d.**  $A_4, B_4, C_4$  is an enlargement scale factor -1, centre (0, 0).  $A_4$  (-3, -2),  $B_4$  (-5, -2),  $C_4$  (-5, -4).

**e.** 
$$A_5, B_5, C_5$$
 is a translation  $\begin{pmatrix} -12 \\ -12 \end{pmatrix}$ .  $A_5 (-9, -10), B_5 (-7, -10), C_5 (-7, -8)$ .

- f.  $A_6, B_6, C_6$  is a reflection in the line y = -x.  $A_6 (-2, -3), B_6 (-2, -5), C_6 (-4, -5)$ .
- **g.**  $A_7, B_7, C_7$  is an enlargement scale factor -2, centre (0, 3).  $A_7$  (-6, 5),  $B_7$  (-10, 5),  $C_7$  (-10, 1).
- h.  $A_8, B_8, C_8$  is a rotation 90° about the origin.  $A_8$  (-2, 3),  $B_8$  (-2, 5),  $C_8$  (-4, 5)

Click here to read the question again

From the diagram in **question 1** describe the single transformation, which maps

- **a.**  $A_2, B_2, C_2$  to  $A_3, B_3, C_3$
- **b.**  $A_4, B_4, C_4$  to  $A_6, B_6, C_6$
- **c.**  $A_8, B_8, C_8$  to  $A_2, B_2, C_2$
- **d.**  $A_3, B_3, C_3$  to  $A_4, B_4, C_4$
- **e.**  $A_6, B_6, C_6$  to  $A_3, B_3, C_3$

# Click here to read the solution to this question

### Click here to see the diagram

- **a.**  $A_2, B_2, C_2$  to  $A_3, B_3, C_3$  is a reflection in the line y = x.
- **b.**  $A_4, B_4, C_4$  to  $A_6, B_6, C_6$  is a reflection in the line y = x.
- **c.**  $A_8, B_8, C_8$  to  $A_2, B_2, C_2$  is a reflection in the line y = -x.
- **d.**  $A_3, B_3, C_3$  to  $A_4, B_4, C_4$  is a rotation 270° about (0, 0).
- **e.**  $A_6, B_6, C_6$  to  $A_3, B_3, C_3$  is a reflection in the *y*-axis or x = 0.

# Click here to read the question again

Draw *x*- and *y*- axis with values from -10 to 10. Draw the following triangle with vertices A(5, 4), B(9, 4) and C(5, 6) and its image under a rotation  $A_1(-9, -3)$ ,  $B_1(-9, -7)$  and  $C_1(-7, -3)$ . Show by construction the centre of rotation.

# Click here to read the solution to this question



The centre of rotation is found by joining two corresponding vertices A to  $A_1$  and B to  $B_2$ . Then construct the perpendicular bisectors of both lines using a compass and a ruler. Finally the point of intersection of the two perpendicular bisectors is the centre of rotation.

#### Click here to read the question again

**A** is a rotation 270° about (0, 0) **B** is a reflection in the line y = -2**C** is a translation, which maps (-2, 3) to (2, 4)

Find the image of the point (-3, 2) under the following transformations

# a. A b. $A^2$ c. CB d. ABC e. $B^1C^1$

Click here to read the solution to this question

**A** is a rotation 270° about (0, 0) **B** is a reflection in the line y = -2

**C** is a translation, which maps (-2, 3) to (2, 4). Note: this is a translation  $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ 



- a.
- **A** (2, 3).  $A^2$  is the same as a rotation of 180°. (3, -2). b.
- **CB** is a reflection in the line y = -2 followed by a translation  $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ . (1, -5) C.
- **ABC** is a translation  $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$  followed by a reflection in the line y = -2d. followed by a rotation of 270°. (-7, -1)
- **B**<sup>-1</sup>**C**<sup>-1</sup> are inverse transformations. This is a translation  $\begin{pmatrix} -4 \\ -1 \end{pmatrix}$  followed by e. a reflection in the line y = -2 (self inverse). (-7, -5).

# Click here to read the question again

The transformation **T** is given by  $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix}$  is composed of two

transformations.

- **a.** Describe the two transformations.
- **b.** Find the image of the point (2, -1) under the transformation.
- **c.** Find the point, which is mapped by **T** onto the point (6, 7).

Click here to read the solution to this question

$$T \text{ is given by } \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

$$a. \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix} \text{ is an enlargement scale factor } -2 \text{ centre } (0, 0),$$
followed by a translation  $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ .
$$b. \text{ The image of } (2, -1) \text{ is given by}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} -4 + 0 \\ 0 + 2 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} -4 + 0 \\ 0 + 2 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
which is  $(0, -1)$ .

**c.** To find the point, which is mapped by **T** onto the point (6, 7), we must work with the inverse transformations.

First the point (6, 7) is mapped to (2, 10) by the translation  $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$ .

The inverse of an enlargement scale factor –2 is an enlargement scale

factor 
$$-\frac{1}{2}$$
, given by the matrix  $\begin{pmatrix} -\frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix}$   
 $\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2\\ 10 \end{pmatrix} = \begin{pmatrix} -1+0\\ 0-5 \end{pmatrix} = \begin{pmatrix} -1\\ -5 \end{pmatrix}$ , which gives the point (-1, -5).

#### Click here to read the question again

**A** is a reflection in the line y = -x. **B** is a reflection in the *x*-axis.

Find the matrix, which represents

### a. A b. B c. AB d. BA

Describe the single transformations **AB** and **BA**.

# Click here to read the solution to this question

**A** is a reflection in the line y = -x. **B** is a reflection in the *x*-axis.



Click here to read the question again