I.G.C.S.E. Matrices and Transformations

Index:
Please click on the question number you want

Question 1

Question 2
Question 3
Question 5

Question 4
Question 6

You can access the solutions from the end of each question

Question 1

Draw x - and y - axis with values from -10 to 10 . Draw the following triangle with vertices $A(3,2), B(5,2)$ and $C(5,4)$. Draw the image of $A B C$ under the following transformations clearly labelling the vertices in each case. Write down the coordinates of the vertices in each case.
a. Enlargement scale factor 2, centre (0,0). Label the image A_{1}, B_{1}, C_{1}.
b. Reflection in the y-axis. Label the image A_{2}, B_{2}, C_{2}.
c. Rotation 270° about $(0,0)$. Label the image A_{3}, B_{3}, C_{3}.
d. Enlargement scale factor -1 , centre $(0,0)$. Label the image A_{4}, B_{4}, C_{4}.
e. Translation $\binom{-12}{-12}$. Label the image A_{5}, B_{5}, C_{5}.
f. Reflection in the line $y=-x$. Label the image A_{6}, B_{6}, C_{6}.
g. Enlargement scale factor -2 , centre (0,3). Label the image A_{7}, B_{7}, C_{7}.
h. Rotation 90° about the origin. Label the image A_{8}, B_{8}, C_{8}.

Click here to read the solution to this question

Click here to return to the index

Solution to question 1

Click here to return to question 2
a. $\quad A_{1}, B_{1}, C_{1}$ is an enlargement scale factor 2 , centre $(0,0)$.
$A_{1}(6,1), B_{1}(10,4), C_{1}(10,8)$.
b. $\quad A_{2}, B_{2}, C_{2}$ is a reflection in the y-axis. $A_{2}(-3,2), B_{2}(-5,2), C_{2}(-5,4)$.
c. $\quad A_{3}, B_{3}, C_{3}$ is a rotation 270° (anticlockwise) about (0,0).

$$
A_{3}(2,-3), B_{3}(2,-5), C_{3}(4,-5)
$$

Click here to continue with solution or go to next page
d. $\quad A_{4}, B_{4}, C_{4}$ is an enlargement scale factor -1 , centre $(0,0)$.

$$
A_{4}(-3,-2), B_{4}(-5,-2), C_{4}(-5,-4) .
$$

e. $\quad A_{5}, B_{5}, C_{5}$ is a translation $\binom{-12}{-12} . A_{5}(-9,-10), B_{5}(-7,-10), C_{5}(-7,-8)$.
f. $\quad A_{6}, B_{6}, C_{6}$ is a reflection in the line $y=-x$. $A_{6}(-2,-3), B_{6}(-2,-5), C_{6}(-4,-5)$.
g. $\quad A_{7}, B_{7}, C_{7}$ is an enlargement scale factor -2 , centre $(0,3)$. $A_{7}(-6,5), B_{7}(-10,5), C_{7}(-10,1)$.
h. $\quad A_{8}, B_{8}, C_{8}$ is a rotation 90° about the origin.
$A_{8}(-2,3), B_{8}(-2,5), C_{8}(-4,5)$

Click here to read the question again

Click here to return to the index

Question 2

From the diagram in question 1 describe the single transformation, which maps
a. A_{2}, B_{2}, C_{2} to A_{3}, B_{3}, C_{3}
b. $\quad A_{4}, B_{4}, C_{4}$ to A_{6}, B_{6}, C_{6}
c. $\quad A_{8}, B_{8}, C_{8}$ to A_{2}, B_{2}, C_{2}
d. $\quad A_{3}, B_{3}, C_{3}$ to A_{4}, B_{4}, C_{4}
e. $\quad A_{6}, B_{6}, C_{6}$ to A_{3}, B_{3}, C_{3}

Click here to read the solution to this question
Click here to return to the index

Solution to question 2

Click here to see the diagram

a. $\quad A_{2}, B_{2}, C_{2}$ to A_{3}, B_{3}, C_{3} is a reflection in the line $y=x$.
b. $\quad A_{4}, B_{4}, C_{4}$ to A_{6}, B_{6}, C_{6} is a reflection in the line $y=x$.
c. $\quad A_{8}, B_{8}, C_{8}$ to A_{2}, B_{2}, C_{2} is a reflection in the line $y=-x$.
d. $\quad A_{3}, B_{3}, C_{3}$ to A_{4}, B_{4}, C_{4} is a rotation 270° about $(0,0)$.
e. $\quad A_{6}, B_{6}, C_{6}$ to A_{3}, B_{3}, C_{3} is a reflection in the y-axis or $x=0$.

Click here to read the question again
Click here to return to the index

Question 3

Draw x - and y - axis with values from -10 to 10. Draw the following triangle with vertices $A(5,4), B(9,4)$ and $C(5,6)$ and its image under a rotation $A_{1}(-9,-3), B_{1}(-9,-7)$ and $C_{1}(-7,-3)$. Show by construction the centre of rotation.

Click here to read the solution to this question

Click here to return to the index

Solution to question 3

The centre of rotation is found by joining two corresponding vertices A to A_{1} and B to B_{2}. Then construct the perpendicular bisectors of both lines using a compass and a ruler. Finally the point of intersection of the two perpendicular bisectors is the centre of rotation.

Click here to read the question again
Click here to return to the index

Question 4

A is a rotation 270° about $(0,0)$
B is a reflection in the line $y=-2$
\mathbf{C} is a translation, which maps $(-2,3)$ to $(2,4)$
Find the image of the point $(-3,2)$ under the following transformations
a. A
b. A^{2}
c. $C B$
d. $A B C$
e. $B^{-1} C^{-1}$

Click here to read the solution to this question

Click here to return to the index

Solution to question 4

A is a rotation 270° about $(0,0)$
B is a reflection in the line $y=-2$
\mathbf{C} is a translation, which maps $(-2,3)$ to $(2,4)$. Note: this is a translation $\binom{4}{1}$

a. $\boldsymbol{A}(2,3)$.
b. $\quad \boldsymbol{A}^{2}$ is the same as a rotation of $180^{\circ} .(3,-2)$.
c. $\quad \boldsymbol{C B}$ is a reflection in the line $y=-2$ followed by a translation $\binom{4}{1} \cdot(1,-5)$
d. $\quad A B C$ is a translation $\binom{4}{1}$ followed by a reflection in the line $y=-2$ followed by a rotation of 270°. $(-7,-1)$
e. $\quad \boldsymbol{B}^{-1} \boldsymbol{C}^{-1}$ are inverse transformations. This is a translation $\binom{-4}{-1}$ followed by a reflection in the line $y=-2$ (self inverse). ($-7,-5$).

Click here to read the question again

Click here to return to the index

Question 5

The transformation \boldsymbol{T} is given by $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)+\binom{4}{-3}$ is composed of two transformations.
a. Describe the two transformations.
b. Find the image of the point $(2,-1)$ under the transformation.
c. Find the point, which is mapped by \boldsymbol{T} onto the point $(6,7)$.

Click here to read the solution to this question

Click here to return to the index

Solution to question 5

\boldsymbol{T} is given by $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)+\binom{4}{-3}$
a. $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)+\binom{4}{-3}$ is an enlargement scale factor -2 centre $(0,0)$, followed by a translation $\binom{4}{-3}$.
b. The image of $(2,-1)$ is given by

$$
\begin{aligned}
\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right)\binom{2}{-1}+\binom{4}{-3} \\
& =\binom{-4+0}{0+2}+\binom{4}{-3} \\
& =\binom{-4}{2}+\binom{4}{-3} \\
& =\binom{0}{-1}
\end{aligned}
$$

which is (0, -1).
c. To find the point, which is mapped by \boldsymbol{T} onto the point (6,7), we must work with the inverse transformations.
First the point $(6,7)$ is mapped to $(2,10)$ by the translation $\binom{-4}{3}$.
The inverse of an enlargement scale factor -2 is an enlargement scale
factor $-\frac{1}{2}$, given by the matrix $\left(\begin{array}{rr}-\frac{1}{2} & 0 \\ 0 & -\frac{1}{2}\end{array}\right)$
$\binom{x}{y}=\left(\begin{array}{rr}-\frac{1}{2} & 0 \\ 0 & -\frac{1}{2}\end{array}\right)\binom{2}{10}=\binom{-1+0}{0-5}=\binom{-1}{-5}$, which gives the point $(-1,-5)$.
Click here to read the question again

Click here to return to the index

Question 6

\boldsymbol{A} is a reflection in the line $y=-x$. \boldsymbol{B} is a reflection in the x-axis.

Find the matrix, which represents
a. A
b. B
c. $A B$
d. $B A$

Describe the single transformations $\boldsymbol{A B}$ and $\boldsymbol{B A}$.
Click here to read the solution to this question
Click here to return to the index

Solution to question 6
\boldsymbol{A} is a reflection in the line $y=-x$.
\boldsymbol{B} is a reflection in the x-axis.
a. A

$$
\begin{aligned}
& \binom{1}{0} \rightarrow\binom{0}{-1} \\
& \binom{0}{1} \rightarrow\binom{-1}{0} \\
& \boldsymbol{A}=\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

b. B

$$
\begin{aligned}
& \binom{1}{0} \rightarrow\binom{1}{0} \\
& \binom{0}{1} \rightarrow\binom{0}{-1} \\
& \boldsymbol{B}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

c. $\quad \boldsymbol{A} \boldsymbol{B}=\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$

From the diagram we can see that $\boldsymbol{A} \boldsymbol{B}$ is a rotation 270° about (0,0).

Click here to read the question again

Click here to return to the index

