IGCSE Matrices

Index:
Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8

You can access the solutions from the end of each question

Question 1

$$
A=\left(\begin{array}{rr}
2 & -3 \\
4 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
-3 & 2 \\
7 & 6
\end{array}\right) .
$$

Express as a single matrix the following:
a. $3 A$
b. $A+B$
c. $B-A$
d. $A B$
e. A^{2}

Click here to read the solution to this question
Click here to return to the index

Solution to question 1

$$
A=\left(\begin{array}{rr}
2 & -3 \\
4 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
-3 & 2 \\
7 & 6
\end{array}\right) .
$$

a. $\quad 3 A=3\left(\begin{array}{rr}2 & -3 \\ 4 & 1\end{array}\right)=\left(\begin{array}{rr}6 & -9 \\ 12 & 3\end{array}\right)$
b. $\quad A+B=\left(\begin{array}{rr}2 & -3 \\ 4 & 1\end{array}\right)+\left(\begin{array}{rr}-3 & 2 \\ 7 & 6\end{array}\right)=\left(\begin{array}{rr}2-3 & -3+2 \\ 4+7 & 1+6\end{array}\right)=\left(\begin{array}{rr}-1 & -1 \\ 11 & 7\end{array}\right)$
c. $\quad B-A=\left(\begin{array}{rr}-3 & 2 \\ 7 & 6\end{array}\right)-\left(\begin{array}{rr}2 & -3 \\ 4 & 1\end{array}\right)=\left(\begin{array}{rr}-3-2 & 2-(-3) \\ 7-4 & 6-1\end{array}\right)=\left(\begin{array}{rr}-5 & 5 \\ 3 & 5\end{array}\right)$
d. $\quad A B=\left(\begin{array}{rr}2 & -3 \\ 4 & 1\end{array}\right)\left(\begin{array}{rr}-3 & 2 \\ 7 & 6\end{array}\right)$

$$
=\left(\begin{array}{rr}
2 \times-3+-3 \times 7 & 2 \times 2+-3 \times 6 \\
4 \times-3+1 \times 7 & 4 \times 2+1 \times 6
\end{array}\right)=\left(\begin{array}{cc}
-6-21 & 4-18 \\
-12+7 & 8+6
\end{array}\right)=\left(\begin{array}{cc}
-27 & -14 \\
-5 & 14
\end{array}\right)
$$

e. $\quad A^{2}=\left(\begin{array}{rr}2 & -3 \\ 4 & 1\end{array}\right)\left(\begin{array}{rr}2 & -3 \\ 4 & 1\end{array}\right)$

$$
=\left(\begin{array}{rr}
2 \times 2+-3 \times 4 & 2 \times-3+-3 \times 1 \\
4 \times 2+1 \times 4 & 4 \times-3+1 \times 1
\end{array}\right)=\left(\begin{array}{rr}
4-12 & -6-3 \\
8+4 & -12+1
\end{array}\right)=\left(\begin{array}{cc}
-8 & -9 \\
12 & -11
\end{array}\right)
$$

Click here to read the question again

Click here to return to the index

Question 2

$$
A=\left(\begin{array}{ll}
6 & 7 \\
2 & 1 \\
1 & 3
\end{array}\right) \quad B=\binom{-4}{2} \text { and } C=\left(\begin{array}{lll}
2 & -3 & 1
\end{array}\right)
$$

Find if possible:
a. $A B$
b. $C A$
c. $C B$

Click here to read the solution to this question
Click here to return to the index

Solution to question 2

$$
A=\left(\begin{array}{ll}
6 & 7 \\
2 & 1 \\
1 & 3
\end{array}\right) \quad B=\binom{-4}{2} \text { and } C=\left(\begin{array}{lll}
2 & -3 & 1
\end{array}\right)
$$

Find if possible:
a. $\quad A B=\left(\begin{array}{ll}6 & 7 \\ 2 & 1 \\ 1 & 3\end{array}\right)\binom{-4}{2}=\left(\begin{array}{r}6 \times-4+7 \times 2 \\ 2 \times-4+1 \times 2 \\ 1 \times-4+3 \times 2\end{array}\right)=\left(\begin{array}{r}-24+14 \\ -8+2 \\ -4+6\end{array}\right)=\left(\begin{array}{r}-10 \\ -6 \\ 2\end{array}\right)$
b. $\quad C A=\left(\begin{array}{lll}2 & -3 & 1\end{array}\right)\left(\begin{array}{ll}6 & 7 \\ 2 & 1 \\ 1 & 3\end{array}\right)$

$$
\begin{aligned}
& =(2 \times 6+-3 \times 2+1 \times 1 \quad 2 \times 7+-3 \times 1+1 \times 3) \\
& =\left(\begin{array}{ll}
12-6+1 & 14-3+3
\end{array}\right) \\
& =\left(\begin{array}{ll}
7 & 14
\end{array}\right)
\end{aligned}
$$

c. $\quad C B$ is not possible as the number of rows in the second matrix B is 2 and the number of rows in the first matrix A is 3 .

Click here to read the question again

Click here to return to the index

Question 3

The diagram shows three town A, B and C.

Write down the following:
a. the direct route matrix.
b. the two-stage route matrix.

Click here to read the solution to this question

Click here to return to the index

Solution to question 3

To
$A B \quad C$
a. One stage-matrix is: From

$$
\begin{aligned}
& A\left(\begin{array}{lll}
0 & 1 & 2 \\
B \\
C & 1 & 0
\end{array} 1\right. \\
& 2
\end{aligned} 1
$$

b. The two-stage matrix is found by squaring the one-stage matrix as shown below

$$
\begin{aligned}
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 \times 0+1 \times 1+2 \times 2 & 0 \times 1+1 \times 0+2 \times 1 & 0 \times 2+1 \times 1+2 \times 0 \\
1 \times 0+0 \times 1+1 \times 2 & 1 \times 1+0 \times 0+1 \times 1 & 1 \times 2+0 \times 1+1 \times 0 \\
2 \times 0+1 \times 1+0 \times 2 & 2 \times 1+1 \times 0+0 \times 1 & 2 \times 2+1 \times 1+0 \times 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0+1+4 & 0+0+2 & 0+1+0 \\
0+0+2 & 1+0+1 & 2+0+0 \\
0+1+0 & 2+0+0 & 4+1+0
\end{array}\right) \\
& =\left(\begin{array}{lll}
5 & 2 & 1 \\
2 & 2 & 2 \\
1 & 2 & 5
\end{array}\right)
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 4

The results of three football teams are show below in a matrix, with another matrix showing the allocation of the points.

W D L	Points
$X\left(\begin{array}{lll}6 & 2 & 1\end{array}\right)$	W (3)
	D 1
$Z\left(\begin{array}{lll}2 & 0 & 4\end{array}\right)$	(0)

Find the number of points for each team.

Click here to read the solution to this question

Click here to return to the index

Solution to question 4

W	D	L	\quad
$X\left(\begin{array}{ccc}6 & 2 & 1 \\ 3 & 5 & 1 \\ 2 & 0 & 4\end{array}\right)$	D	$D\left(\begin{array}{l}3 \\ 1 \\ Z\end{array}\right)$	

The number of points for each team is found by multiplying the two matrices together

$$
\left(\begin{array}{lll}
6 & 2 & 1 \\
3 & 5 & 1 \\
2 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
6 \times 3+2 \times 1+1 \times 0 \\
3 \times 3+5 \times 1+1 \times 0 \\
2 \times 3+0 \times 1+4 \times 0
\end{array}\right)=\left(\begin{array}{r}
18+2+0 \\
9+5+0 \\
6+0+0
\end{array}\right)=\left(\begin{array}{r}
20 \\
14 \\
6
\end{array}\right)
$$

Points
which gives $\left.\begin{array}{l|r}A & 20 \\ B & 14 \\ C & 6\end{array}\right)$
Hence team A has 20 points, team B 14 points and team C 6 points.

Click here to read the question again

Click here to return to the index

Question 5

If $M=\left(\begin{array}{rr}4 & -3 \\ -2 & -5\end{array}\right)$. Find the inverse matrix M^{-1}.

Click here to read the solution to this question

Click here to return to the index

Solution to question 5
If $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$.

So if $M=\left(\begin{array}{rr}4 & -3 \\ -2 & -5\end{array}\right)$ then

$$
\begin{aligned}
M^{-1} & =\frac{1}{(4)(-5)-(-3)(-2)}\left(\begin{array}{rr}
-5 & 3 \\
2 & 4
\end{array}\right) \\
& =\frac{1}{-20-6}\left(\begin{array}{rr}
-5 & 3 \\
2 & 4
\end{array}\right) \\
& =-\frac{1}{26}\left(\begin{array}{rr}
-5 & 3 \\
2 & 4
\end{array}\right) \\
& =\frac{1}{26}\left(\begin{array}{rr}
5 & -3 \\
-2 & -4
\end{array}\right)
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 6

If $A B=I$, where $A=\left(\begin{array}{ll}2 & 5 \\ 4 & 1\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find the matrix B.

Click here to read the solution to this question

Click here to return to the index

Solution to question 6

$$
\begin{aligned}
& A B=I, \text { where } A=\left(\begin{array}{ll}
2 & 5 \\
4 & 1
\end{array}\right) \text { and } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& A B=I \\
& A^{-1} A B=A^{-1} I \\
& I B=A^{-1} \\
& B=A^{-1}
\end{aligned}
$$

Now if If $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$.
Therefore

$$
\begin{aligned}
A^{-1} & =\frac{1}{(2)(1)-(5)(4)}\left(\begin{array}{rr}
1 & -5 \\
-4 & 2
\end{array}\right) \\
& =\frac{1}{2-20}\left(\begin{array}{rr}
1 & -5 \\
-4 & 2
\end{array}\right) \\
& =-\frac{1}{18}\left(\begin{array}{rr}
1 & -5 \\
-4 & 2
\end{array}\right) \\
& =\frac{1}{18}\left(\begin{array}{rr}
-1 & 5 \\
4 & -2
\end{array}\right)
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 7

If $X Y=\left(\begin{array}{rr}2 & 7 \\ -2 & 4\end{array}\right)$ and $X=\left(\begin{array}{rr}3 & 2 \\ 8 & -1\end{array}\right)$, find the matrix Y.

Click here to read the solution to this question

Click here to return to the index

Solution to question 7

$$
\begin{aligned}
& X Y=\left(\begin{array}{rr}
2 & 7 \\
-2 & 4
\end{array}\right) \text { and } X=\left(\begin{array}{rr}
3 & 2 \\
8 & -1
\end{array}\right) \\
& X Y=\left(\begin{array}{rr}
2 & 7 \\
-2 & 4
\end{array}\right) \\
& X^{-1} X Y=X^{-1}\left(\begin{array}{rr}
2 & 7 \\
-2 & 4
\end{array}\right) \\
& I Y=X^{-1}\left(\begin{array}{rr}
2 & 7 \\
-2 & 4
\end{array}\right) \\
& Y=X^{-1}\left(\begin{array}{rr}
2 & 7 \\
-2 & 4
\end{array}\right) \\
& X^{-1}=\frac{1}{(3)(-1)-(2)(8)}\left(\begin{array}{rr}
-1 & -2 \\
-8 & 3
\end{array}\right) \\
& =\frac{1}{-3-16}\left(\begin{array}{rr}
-1 & -2 \\
-8 & 3
\end{array}\right) \\
& =-\frac{1}{19}\left(\begin{array}{rr}
-1 & -2 \\
-8 & 3
\end{array}\right) \\
& =\frac{1}{19}\left(\begin{array}{rr}
1 & 2 \\
8 & -3
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
Y & =\frac{1}{19}\left(\begin{array}{rr}
1 & 2 \\
8 & -3
\end{array}\right)\left(\begin{array}{rr}
2 & 7 \\
-2 & 4
\end{array}\right)=\frac{1}{19}\left(\begin{array}{rr}
1 \times 2+2 \times-2 & 1 \times 7+2 \times 4 \\
8 \times 2+(-3) \times(-2) & 8 \times 7+(-3) \times 4
\end{array}\right) \\
& =\frac{1}{19}\left(\begin{array}{rr}
2-4 & 7+8 \\
16+6 & 56-12
\end{array}\right)=\frac{1}{19}\left(\begin{array}{rr}
-2 & 15 \\
22 & 44
\end{array}\right)
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 8

If the matrix $\left(\begin{array}{rr}2 & -1 \\ 4 & k\end{array}\right)$ has no inverse find the value of k.

Click here to read the solution to this question

Click here to return to the index

Solution to question 8

For the matrix $\left(\begin{array}{rr}2 & -1 \\ 4 & k\end{array}\right)$ to have no inverse then the determinant is equal to zero.

Hence $2 k-(-1)(4)=0$

$$
\begin{aligned}
2 k+4 & =0 \\
2 k & =-4 \\
k & =-2
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

