I.G.C.S.E. Linear Programming

Index:
Please click on the question number you want

Question 1

Question 2

You can access the solutions from the end of each question

Question 1

a. Find the equations of the lines L_{1}, L_{2} and L_{3}.
b. The unshaded region is defined by three inequalities. Write down these three inequalities.

Click here to read the solution to this question

Click here to return to the index

Solution to question 1

a. $\quad L_{1}$ is the line $y=1$ as the y coordinate is always 1 regardless of the x coordinate.
For L_{2} if we construct a small table of convenient points, we have

x	0	1	2
y	0	2	4

We can observe that we have the line $y=2 x$.
For L_{3} we see that when $y=0$ we have $x=5$ the line crosses the x-axis at $(5,0)$. When $x=0$ we have $y=5$, the line crosses the y-axis at (0 , 5). Hence we have the line $x+y=5$.
b. Considering $L_{1}, y=1$, the unshaded region is above the line hence $y>1$. It is not equal to as the line is broken.
Considering L_{2} and taking a point not in the line like $(2,2)$.
At $(2,2)$ we have $y \leq 2 x$

$$
2 \leq 2(2)
$$

$2 \leq 4$ which is true, ignoring the equal sign.
Considering L_{3} and taking a point not on the line like (0,0).
At $(2,2)$ we have $x+y \leq 5$
$0+0 \leq 5$
$0 \leq 5$ which is true, ignoring the equal sign.
Therefore the unshaded region is represented by $y>0, y \leq 2 x, x+y \leq 5$.

Click here to read the question again

Click here to return to the index

Question 2

José and César are tailors. They make x jackets and y suites each week. José does all the cutting, and César does all the sewing.

To make a jacket takes 5 hours of cutting and 4 hours of sewing.
To make a suit takes 6 hours of cutting and 10 hours of sewing.
Neither tailor works for more than 60 hours a week.
a. For the sewing, show that

$$
2 x+5 y \leq 30
$$

b. Write down another inequality in x and y for the cutting.
c. They make at least 8 jackets each week. Write down another inequality.
d. i. Draw axes from 0 to 16 , using 1 cm to represent 1 unit on each axes.
ii. On your grid, show the information in parts \mathbf{a}, \mathbf{b} and \mathbf{c}. Shade the unwanted regions.
e. The profit on a jacket is $\$ 30$ and on a suit is $\$ 100$.

Calculate the maximum profit that José and César can make in a week.

Click here to read the solution to this question

Click here to return to the index

Solution to question 2

a. From the information in the question that a jacket (x) takes 4 hours of sewing and a suit (y) takes 10 hours of sewing. César, who does the sewing, can only work for 60 hours per week. Hence $4 x+10 y \leq 60 \Rightarrow 2 x+5 y \leq 30$.
b. From the information in the question that a jacket (x) takes 5 hours of cutting and a suit (y) takes 6 hours of cutting. José, who does the cutting, can only work for 60 hours per week. Hence $5 x+6 y \leq 60$.
c. They must make at least 8 jackets (x) hence $x \geq 8$.
d. i. Drawing the lines, $x=8$ is where the x-coordinate is 8 regardless of what the y-coordinate is.

$$
2 x+5 y=30
$$

$$
x \text {-axis }(y=0) 2 x+5(0)=30 \Rightarrow 2 x=30 \Rightarrow x=15, \text { plot }(15,0)
$$

$$
y \text {-axis }(x=0) 2(0)+5 y=30 \Rightarrow 5 y=30 \Rightarrow y=6, \text { plot }(0,6)
$$

$$
5 x+6 y=60
$$

$$
x \text {-axis }(y=0) 5 x+6(0)=60 \Rightarrow 5 x=60 \Rightarrow x=12, \text { plot }(12,0)
$$

$$
y \text {-axis }(x=0) 5(0)+6 y=60 \Rightarrow 6 y=60 \Rightarrow y=10, \text { plot }(0,10)
$$ (see graph)

ii. Shading.

For $x \geq 8$, shade to the left of the line as we are shading unwanted regions.

Considering $2 x+5 y \leq 30$ and taking a point not in the line like (0,0).

$$
\text { At }(0,0), \quad \begin{aligned}
2 x+5 y & \leq 30 \\
2(0)+5(0) & \leq 30
\end{aligned}
$$

$0 \leq 30$ which is true, ignoring the equal sign.
Therefore the point $(0,0)$ is in the region, we shade the other side of the line.

Click here to continue with solution or go to the next page

Considering $5 x+6 y \leq 60$ and taking a point not on the line like (0,0).
At $(0,0)$ we have

$$
5 x+6 y \leq 60
$$

$5(0)+6(0) \leq 60$
$0 \leq 60$ which is true, ignoring the equal sign.
Therefore the point $(0,0)$ is in the region, we shade the other side of the line.

Click here to continue with solution or go to the next page
e. The blue dots in the unshaded region show the possible combinations of jackets and suits. Making a table and calculating the profit which is $30 x+100 y$, for the value that gives the maximum value.

x	8	8	8	9	9	9	10	10	11	12
y	0	1	2	0	1	2	0	1	0	0
$30 x$						270				
$100 y$						200				
Profit						$\$ 470$				

Therefore the maximum profit José and César can make is $\$ 470$.

Click here to read the question again

Click here to return to the index

