## I.G.C.S.E. Geometry 03

Index:

Please click on the question number you want

| Question 1 | Question 2 |
| :--- | :--- |
| Question 3 | Question 4 |
| Question 5 | Question 6 |
| Question 7 | Question 8 |

You can access the solutions from the end of each question

## Question 1

1. Find the angles with letters, showing clearly all working out. ( $A B$ is always a straight line).



Click here to read the solution to this question
Click here to return to the index

## Solution to question 1

a.

b.

Angles on a straight line add up to $180^{\circ}$

$$
\begin{aligned}
25^{\circ}+a+60^{\circ} & =180^{\circ} \\
a & =180^{\circ}-25^{\circ}-60^{\circ} \\
& =95^{\circ}
\end{aligned}
$$

d.


$$
\begin{aligned}
2 c+3 c+c & =180^{\circ} \\
6 c & =180^{\circ} \\
c & =30^{\circ}
\end{aligned}
$$

Angles at a point add up to $360^{\circ}$

$$
\begin{aligned}
140^{\circ}+120^{\circ}+b & =360^{\circ} \\
b & =360^{\circ}-140^{\circ}-120^{\circ} \\
& =100^{\circ}
\end{aligned}
$$



$$
0
$$

c.

e.

f.


Add an angle $x$ to the diagram The triangles are isosceles so $x=2\left(65^{\circ}\right)$ The opposite exterior angle is equal to the two opposite interior angles.

Therefore

$$
i=\frac{180^{\circ}-130^{\circ}}{2}
$$

$$
=25^{\circ}
$$

The opposite exterior angle is equal to the two opposite interior angles.

$$
\begin{aligned}
& h=2 e+90^{\circ} \\
& =2\left(30^{\circ}\right)+90^{\circ} \\
& =150^{\circ} \\
& \text { or } \\
& \begin{array}{r}
e+h=180^{\circ} \\
30^{\circ}+h=180^{\circ} \\
h=150^{\circ}
\end{array}
\end{aligned}
$$

## Click here to read the question again

## Click here to return to the index

Question 2
Find angles marked for the following regular polygons.
a.

b.


Click here to read the solution to this question
Click here to return to the index

Solution to question 2
a.

b.


The sum of the exterior angles of any polygon is $360^{\circ}$
The sum of the exterior and interior angle is $180^{\circ}$

$$
\begin{array}{rr}
b=\frac{360^{\circ}}{5} & d=\frac{360^{\circ}}{8} \\
=72^{\circ} & =45^{\circ} \\
a+b=180^{\circ} & c+d=180^{\circ} \\
a+72^{\circ}=180^{\circ} & c+45^{\circ}=180^{\circ} \\
a=108^{\circ} & c=135^{\circ}
\end{array}
$$

## Click here to read the question again

Click here to return to the index

## Question 3

Calculate the number of sides of a regular polygon whose interior angles are each $150^{\circ}$.

Click here to read the solution to this question
Click here to return to the index

## Solution to question 3

The sum of the exterior and interior angle is $180^{\circ}$

$$
\begin{aligned}
i+e & =180^{\circ} \\
150^{\circ}+e & =180^{\circ} \\
e & =30^{\circ}
\end{aligned}
$$

The sum of the exterior angles of any polygon is $360^{\circ}$
The number of sides is $\frac{360^{\circ}}{30^{\circ}}=12$ sides

Click here to read the question again

## Click here to return to the index

## Question 4

In the following questions find the angles marked with letters, giving reasons for your answers.
a.

b.


Click here to read the solution to this question
Click here to return to the index

## Solution to question 4

a.
b.


$$
\begin{aligned}
a+64^{\circ} & =180^{\circ} \\
a & =180^{\circ}-64^{\circ} \\
a & =116^{\circ}
\end{aligned}
$$

$b=64^{\circ}$ (corresponding angles)

$$
\begin{gathered}
c=64^{\circ} \text { (vertically opposite } \\
\text { angles) }
\end{gathered}
$$



$$
\begin{aligned}
e=100^{\circ} & \text { (alternate angles) } \\
d+62^{\circ} & =180^{\circ} \quad \text { (allied angles) } \\
d & =118^{\circ} \\
f+d & =180^{\circ} \text { (allied angles) } \\
f+118^{\circ} & =180^{\circ} \\
f & =62^{\circ}
\end{aligned}
$$

Click here to read the question again

## Click here to return to the index

## Question 5

Show that triangles ABC and PQR are similar and find the sides marked with letters.


Click here to read the solution to this question

## Click here to return to the index

## Solution to question 5

We have to show that the two angles are equal in both triangles.


$$
\begin{aligned}
\hat{B} & =\hat{R} \\
\hat{C} & =\hat{P} \\
\Rightarrow \hat{A} & =\hat{Q}
\end{aligned}
$$

Hence $\triangle A B C$ is similar to $\triangle P Q R$

$$
\text { Now } \begin{aligned}
\frac{A B}{Q R} & =\frac{B C}{R P}=\frac{C A}{P Q} \\
\frac{c}{6} & =\frac{6}{3}=\frac{16}{r}
\end{aligned}
$$

Hence $\frac{c}{6}=\frac{6}{3} \Rightarrow c=\frac{6 \times 6}{3}=18 \mathrm{~cm}$
and $\frac{6}{3}=\frac{16}{r} \Rightarrow \frac{r}{16}=\frac{3}{6} \Rightarrow r=\frac{3 \times 16}{6}=8 \mathrm{~cm}$

## Click here to read the question again

## Click here to return to the index

## Question 6

Show that triangles PQT and PRS are similar and find the sides marked with letters.


Click here to read the solution to this question

## Click here to return to the index

## Solution to question 6



Split the diagram into two triangles


Now considering $\triangle P R S$ and $\triangle P Q T$
we have $\hat{P}=\hat{P}$ (same angle in both triangles), $\hat{R}=\hat{Q}$ (corresponding angles) and therefore $\hat{S}=\hat{T}$. Therefore $\triangle P R S$ and $\triangle P Q T$ are similar.

Now $\frac{P R}{P Q}=\frac{R S}{Q T}=\frac{S P}{T P} \Rightarrow \frac{m}{m-2}=\frac{p}{3}=\frac{8}{5}$
Hence $\frac{m}{m-2}=\frac{8}{5} \Rightarrow 5 m=8(m-2) \Rightarrow 5 m=8 m-16 \Rightarrow 3 m=16 \Rightarrow m=\frac{16}{3} \mathrm{~cm}$
and $\frac{p}{3}=\frac{8}{5} \Rightarrow p=\frac{8 \times 3}{5}=\frac{24}{5} \mathrm{~cm}$

## Click here to read the question again

Click here to return to the index

## Question 7

In the diagram $A \hat{B} C=A \hat{D} B=90^{\circ}, A D=m$ and $D C=n$.
a. Use similar triangles to show that $x^{2}=m z$
b. Find a similar expression for $y^{2}$
c. Add the expressions for $x^{2}$ and $y^{2}$ and hence prove Pythagoras' theorem.


Click here to read the solution to this question
Click here to return to the index

Solution to question 7


In $\triangle A B C$ and $\triangle A D B$
$\hat{A}=\hat{A}$ (the same angle in both triangles), $\hat{B}=\hat{D}=90^{\circ}$ hence $\hat{C}=\hat{B}$.
Therefore $\triangle A B C$ and $\triangle A D B$ are similar.
$\frac{A B}{A D}=\frac{B C}{D B}=\frac{C A}{B A} \Rightarrow \frac{x}{m}=\frac{z}{x} \Rightarrow x^{2}=m z$
b.


B


In $\triangle A B C$ and $\triangle B C D$
$\hat{C}=\hat{C}$ (the same angle in both triangles), $\hat{B}=\hat{D}=90^{\circ}$ hence $\hat{A}=\hat{B}$. Therefore $\triangle A B C$ and $\triangle B C D$ are similar.

$$
\frac{C B}{C D}=\frac{B A}{D B}=\frac{A C}{B C} \Rightarrow \frac{y}{n}=\frac{z}{y} \Rightarrow y^{2}=n z
$$

c. Now $x^{2}+y^{2}=m z+n z$

$$
\begin{aligned}
& =(m+n) z \\
& =z^{2}
\end{aligned}
$$



Hence $z^{2}=x^{2}+y^{2}$, which is Pythagoras' theorem for $\triangle A B C$.

Click here to read the question again
Click here to return to the index

## Question 8

The volumes of two similar objects are $64 \mathrm{~cm}^{3}$ and $343 \mathrm{~cm}^{3}$ respectively.
a. Find the length ratio.
b. Find the ratio of the surface areas.
c. Given that the larger object has a surface area of $105 \mathrm{~cm}^{2}$, find the surface area of the smaller object.

## Click here to read the solution to this question

## Click here to return to the index

## Solution to question 8

a. The ratio of the volumes is $\frac{64}{343}$

Therefore the length ratio is $\sqrt[3]{\frac{64}{343}}=\frac{4}{7}$
b. The area ratio is $\left(\frac{4}{7}\right)^{2}=\frac{16}{49}$
c. The surface area of the smaller object is

$$
\frac{16}{49^{7}} \times 105^{15}=\frac{240}{7}=34 \frac{2}{7} \mathrm{~cm}^{2}
$$

## Click here to read the question again

## Click here to return to the index.

