I.G.C.S.E. Geometry

Index:
Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8
Question 9	Question 10

You can access the solutions from the end of each question

Question 1

Use a ruler and a protractor only to draw a full size diagram and measure the sides marked with letters.

Click here to read the solution to this question

Click here to return to the index

Solution to question 1

By drawing accurate diagrams using a protractor and ruler only and measuring the sides with a ruler we have
$a=6.2 \mathrm{~cm}$
$b=4.6 \mathrm{~cm}$
$c=3.3 \mathrm{~cm}$
$d=3.2 \mathrm{~cm}$

Click here to read the question again

Click here to return to the index

Question 2

Construct the triangles below using a ruler and compass only and measure angles marked with letters.

Click here to read the solution to this question
Click here to return to the index

Solution to question 2

By drawing accurate diagrams using a compass and ruler only and measuring the angles with a protractor we have

$$
\begin{aligned}
& a=94^{\circ} \\
& b=120^{\circ}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 3

Draw a net to make a cube and mark on where you would mark on the numbers to make a die.

Click here to read the solution to this question
Click here to return to the index

Solution to question 3

There are other possibilities.
Click here to read the question again
Click here to return to the index

Question 4

Find the angles marked with letters

Click here to read the solution to this question
Click here to return to the index

Solution to question 4

Angles at a point add up to 360°

$$
\begin{aligned}
120^{\circ}+110^{\circ}+a+a & =360^{\circ} \\
230^{\circ}+2 a & =360^{\circ} \\
2 a & =360^{\circ}-230^{\circ} \\
2 a & =130^{\circ} \\
a & =\frac{130^{\circ}}{2}=65^{\circ}
\end{aligned}
$$

Angles on a straight line add up to 180°

$$
\begin{aligned}
90^{\circ}+b+2 b & =180^{\circ} \\
90^{\circ}+3 b & =180^{\circ} \\
3 b & =180^{\circ}-90^{\circ} \\
3 b & =90^{\circ} \\
b & =\frac{90^{\circ}}{3}=30^{\circ}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 5

Find the angles marked with letters

Click here to read the solution to this question
Click here to return to the index

Solution to question 5

The exterior angle of a triangle is equal to the sum of the two opposite interior angles

$$
\begin{aligned}
a+30^{\circ} & =50^{\circ} \\
a & =50^{\circ}-30^{\circ}=20^{\circ}
\end{aligned}
$$

The triangle is isosceles and therefore has two equal sides and angles.
$c=65^{\circ}$ equal base angles.

Angles in a triangle add up to 180°

$$
\begin{aligned}
b+65^{\circ}+65^{\circ} & =180^{\circ} \\
b+130^{\circ} & =180^{\circ} \\
b & =180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 6

1. Find the angles marked with letters.

Click here to read the solution to this question
Click here to return to the index

Solution to question 6

$a=75^{\circ}$ (alternate angles).

$$
\begin{aligned}
62^{\circ}+b & =180^{\circ} \quad \text { (allied angles) } \\
b & =180^{\circ}-62^{\circ}=118^{\circ}
\end{aligned}
$$

$c=57^{\circ}$ (alternate angles).

$$
\begin{array}{r}
120^{\circ}+d=180^{\circ} \quad \text { (allied angles) } \\
d=180^{\circ}-120^{\circ}=60^{\circ} \\
c+d+e=180^{\circ} \quad \text { (angles on a } \\
57^{\circ}+60^{\circ}+e=180^{\circ} \quad \text { straight line) } \\
117^{\circ}+e=180^{\circ} \\
e=180^{\circ}-117^{\circ}=63^{\circ}
\end{array}
$$

Click here to read the question again

Click here to return to the index

Question 7

Find the angles marked with letters.

Click here to read the solution to this question
Click here to return to the index

Solution to question 7

Quadrilateral

Angles in a quadrilateral add up to 360

$$
\begin{aligned}
60^{\circ}+45^{\circ}+110^{\circ}+a & =360^{\circ} \\
215^{\circ}+a & =360^{\circ} \\
a & =360^{\circ}-215^{\circ}=145^{\circ}
\end{aligned}
$$

Regular Pentagon

Angles at a point add up to 360
$b=\frac{360^{\circ}}{5}=72^{\circ}$

Triangle $A O B$ is isosceles hence

$$
\begin{aligned}
b+c+c & =180^{\circ} \\
72^{\circ}+2 c & =180^{\circ} \\
2 c & =180^{\circ}-72^{\circ} \\
c & =\frac{108^{\circ}}{2}=54^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
d & =2 c \\
& =2 \times 54^{\circ} \\
& =108^{\circ}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 8

Find the angles marked in the diagram

Click here to read the solution to this question
Click here to return to the index

Solution to question 8

Angles on a straight line add up to 180°

$$
\begin{aligned}
a+35^{\circ} & =180^{\circ} \\
a & =180^{\circ}-35^{\circ}=145^{\circ} \\
b+50^{\circ} & =180^{\circ} \\
b & =180^{\circ}-50^{\circ}=130^{\circ} \\
c+55^{\circ} & =180^{\circ} \\
c & =180^{\circ}-55^{\circ}=125^{\circ}
\end{aligned}
$$

The sum of the exterior angles of any polygon is 360°

$$
\begin{aligned}
90^{\circ}+55^{\circ}+35^{\circ}+50^{\circ}+60^{\circ}+d & =360^{\circ} \\
290^{\circ}+d & =360^{\circ} \\
d & =360^{\circ}-290^{\circ}=70^{\circ}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 9

Each exterior angle of a regular polygon is 30°. Find:
a. the number of sides of the polygon;
b. the size of each interior angle.

Click here to read the solution to this question
Click here to return to the index

Solution to question 9

a. The sum of the exterior angles of any polygon is 360°

Number of sides $=\frac{360^{\circ}}{30^{\circ}}=12$ sides
b. The sum of the exterior and interior angle of any polygon is 180°

$$
\begin{aligned}
& e+i=180^{\circ} \\
& 30^{\circ}+i=180^{\circ} \\
& i=180^{\circ}-30^{\circ}=150^{\circ}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 10
Find the value of the angle a.

Click here to read the solution to this question
Click here to return to the index

Solution to question 10

The angle a semi-circle is a right angle.
Therefore $a+2 a=90^{\circ}$

$$
\begin{aligned}
3 a & =90^{\circ} \\
a & =\frac{90^{\circ}}{3}=30^{\circ}
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

