I.G.C.S.E. Geometry 01

Index:
Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8

You can access the solutions from the end of each question

Question 1

Find the angles marked with letters, showing clearly your working out and giving reasons.
a.

b.

d.

Click here to read the solution to this question

Click here to return to the index

Solution to question 1
a.

Angles on the straight line are supplementary.

$$
\begin{aligned}
2 a+21^{\circ}+45^{\circ} & =180^{\circ} \\
2 a & =114^{\circ} \\
a & =57^{\circ}
\end{aligned}
$$

b.

Angles at a point add up to 360°

$$
\begin{aligned}
2 b+b+b+2 b & =360^{\circ} \\
6 b & =360^{\circ} \\
b & =60^{\circ}
\end{aligned}
$$

C.

d.

$$
\begin{aligned}
a & =180^{\circ}-114^{\circ} \\
& =66^{\circ} \\
b & =180^{\circ}-125^{\circ} \\
& =55^{\circ}
\end{aligned}
$$

Angle sum of a triangle is 180°

$$
\begin{aligned}
c & =180^{\circ}-66^{\circ}-55^{\circ} \\
& =59^{\circ}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 2

In the quadrilateral $\mathrm{ABCD}, \hat{A}=107^{\circ}, \hat{B}=73^{\circ}, \hat{C}=46^{\circ}$ and $A \hat{B} D=24^{\circ}$. Calculate $A \hat{D} B$ and $B \hat{D} C$.

Click here to read the solution to this question
Click here to return to the index

Solution to question 2
Drawing a rough diagram and putting in the following information $\hat{A}=107^{\circ}$, $\hat{B}=73^{\circ}, \hat{C}=46^{\circ}$ and $A \hat{B} D=24^{\circ}$.

Angle sum of a triangle is 180°.

$$
\begin{aligned}
A \hat{D} B & =180^{\circ}-107^{\circ}-24^{\circ} \\
& =49^{\circ} \\
B \hat{D} C & =180^{\circ}-46^{\circ}-\left(73^{\circ}-24^{\circ}\right) \\
& =85^{\circ}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 3

For the following polygons find the total angle sum and the missing angles.
a.

b. The polygon is regular.

Click here to read the solution to this question

Click here to return to the index

Solution to question 3

a.
b. The polygon is regular.

Interior angle sum of any polygon With n sides is given by:

$$
\begin{gathered}
(n-2) \times 180^{\circ} \\
(5-2) \times 180^{\circ}=540^{\circ} \\
98^{\circ}+6 a=540^{\circ} \\
6 a=442^{\circ} \\
a=73 \frac{2}{3}^{\circ}
\end{gathered}
$$

$$
(8-2) \times 180^{\circ}=1080^{\circ}
$$

Exterior angle sum of any polygon is 360°
$b=\frac{360^{\circ}}{8}=45^{\circ}$

Click here to read the question again

Click here to return to the index

Question 4

Calculate the number of sides of a regular polygon whose interior angles are each 168°.

Click here to read the solution to this question

Click here to return to the index

Solution to question 4

The exterior angle of the polygon is given by

$$
\begin{aligned}
e & =180^{\circ}-168^{\circ} \text { (angles on a straight line). } \\
& =12^{\circ}
\end{aligned}
$$

The sum of the exterior angles of any polygon is 360°

$$
\text { Number of sides }=\frac{360^{\circ}}{12^{\circ}}=30 \text { sides }
$$

Click here to read the question again
Click here to return to the index

Question 5

Find the angles marked with letters, showing clearly all your working out and giving reasons.
a.

b.

Click here to read the solution to this question
Click here to return to the index

Solution to question 5

$$
\begin{aligned}
a & =180^{\circ}-168^{\circ} \\
& =12^{\circ}
\end{aligned}
$$

$b=112^{\circ}$ (corresponding angles) $\quad b=37^{\circ}$ (alternate angles)
$c=112^{\circ}$ (vertically opposite

$123^{\circ}+a=180^{\circ}$ (allied angles)
$a=57^{\circ}$
$c=123^{\circ}$ (vertically opposite angles)

Click here to read the question again

Click here to return to the index

Question 6

Find the value of x in the following
a.

b.

Click here to read the solution to this question
Click here to return to the index

Solution to question 6
a.

b.

Using Pythagoras' theorem

$$
\begin{aligned}
x^{2} & =6^{2}+7^{2} \\
x & =\sqrt{6^{2}+7^{2}} \\
& =\sqrt{85} \mathrm{~cm} \approx 9.22 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
8^{2} & =x^{2}+5^{2} \\
x^{2} & =8^{2}-5^{2} \\
x & =\sqrt{8^{2}-5^{2}} \\
& =\sqrt{39} \mathrm{~cm} \approx 6.24 \mathrm{~cm}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 7

Find the length of diagonal of a rectangle length 8 cm and width 3 cm .
Click here to read the solution to this question
Click here to return to the index

Solution to question 7

Drawing a diagram

By Pythagoras' theorem we have

$$
\begin{aligned}
d^{2} & =8^{2}+3^{2} \\
d & =\sqrt{8^{2}+3^{2}} \\
& =\sqrt{73} \mathrm{~cm} \approx 8.54 \mathrm{~cm}
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 8

Find the length of a diagonal of a rectangular box length 4 cm , width 3 cm and height 5 cm .

Click here to read the solution to this question
Click here to return to the index

Solution to question 8

Considering triangle $D A B$ we have Now considering triangle $D A F$ we have B

$$
=\sqrt{50}
$$

$$
=5 \sqrt{2} \mathrm{~cm} \approx 7.07 \mathrm{~cm}
$$

Click here to read the question again

Click here to return to the index

