I.G.C.S.E. Functions \& Vectors

Index:

Please click on the question number you want

Question 1	Question 2
Question 3	Question 4
Question 5	Question 6
Question 7	Question 8

You can access the solutions from the end of each question

Question 1

The following functions f, g and h are defined as follows:
$f: x \rightarrow 4 x-1, \quad g: x \rightarrow \frac{x^{2}-2}{3}, h: x \rightarrow \frac{4}{x}$.
Find
a. $\quad f(7), f(-7), f\left(\frac{1}{7}\right)$.
b. $\quad g(4), g(-3), g\left(\frac{1}{2}\right)$.
c. $\quad h(10), h(-4), h\left(-\frac{1}{8}\right)$

Click here to read the solution to this question

Click here to return to the index

Solution to question 1

a. $f: x \rightarrow 4 x-1$

$$
\begin{aligned}
& f(7)=4(7)-1=28-1=27 \\
& f(-7)=4(-7)-1=-28-1=-29 \\
& f\left(\frac{1}{7}\right)=4\left(\frac{1}{7}\right)-1=\frac{4}{7}-1=-\frac{3}{7}
\end{aligned}
$$

b. $\quad g: x \rightarrow \frac{x^{2}-2}{3}$

$$
\begin{aligned}
& g(4)=\frac{(4)^{2}-2}{3}=\frac{16-2}{3}=\frac{14}{3}=4 \frac{2}{3} \\
& g(-3)=\frac{(-3)^{2}-2}{3}=\frac{9-2}{3}=\frac{7}{3}=2 \frac{1}{3} \\
& g\left(\frac{1}{2}\right) \cdot g\left(\frac{1}{2}\right)=\frac{\left(\frac{1}{2}\right)^{2}-2}{3}=\frac{\frac{1}{4}-2}{3}=\frac{-\frac{7}{4}}{3}=-\frac{7}{12}
\end{aligned}
$$

c. $\quad h: x \rightarrow \frac{4}{x}$

$$
\begin{aligned}
& h(10)=\frac{4}{(10)}=\frac{2}{5} \\
& h(-4)=\frac{4}{(-4)}=-1 \\
& h\left(-\frac{1}{8}\right) h\left(-\frac{1}{8}\right)=\frac{4}{\left(-\frac{1}{8}\right)}=-32
\end{aligned}
$$

Click here to read the question again
Click here to return to the index

Question 2

For the following functions $f: x \rightarrow 2-3 x$ and $g: x \rightarrow x^{2}-2 x$, find
a. the value of x such that $f(x)=-3$
b. the values of x such that $g(x)=3$

Click here to read the solution to this question
Click here to return to the index

Solution to question 2
a. $f: x \rightarrow 2-3 x$

$$
\begin{aligned}
f(x)=-3 \Rightarrow 2-3 x & =-3 \\
-3 x & =-5 \\
x & =\frac{5}{3}
\end{aligned}
$$

b. $\quad g: x \rightarrow x^{2}-2 x$

$$
\begin{aligned}
& g(x)=3 \Rightarrow \quad x^{2}-2 x=3 \\
& \begin{aligned}
& x^{2}-2 x-3=0 \\
& \text { product }=-3
\end{aligned} \\
& \text { sum = -2 } \\
& \text { factors }-3,1 \\
& x^{2}-3 x+x-3=0 \\
& x(x-3)+(x-3)=0 \\
& (x-3)(x+1)=0 \\
& \Rightarrow x=3 \text { or } x=-1
\end{aligned}
$$

Click here to read the question again

Click here to return to the index

Question 3

Given that the function f is defined as $f: x \rightarrow a x+b$, where a and b are constants. If $f(2)=3$ and $f(-4)=9$.

Click here to read the solution to this question

Click here to return to the index

Solution to question 3
$f: x \rightarrow a x+b$
$f(2)=3 \Rightarrow 2 a+b=3 \ldots 1$.
$f(-4)=9 \Rightarrow-4 a+b=9 \ldots 2$.
Solving equations 1 and 2 simultaneously we have
$1-2 \quad 2 a+b=3 \ldots 1$.
$-4 a+b=9 \ldots 2$.
$6 a=-6$
$\Rightarrow a=-1$
Substitute $a=-1$ into equation 1 we have

$$
\begin{array}{r}
2(-1)+b=3 \\
-2+b=3 \\
b=5
\end{array}
$$

Check in equation 2 we have $-4(-1)+(5)=4+5=9$
Hence $a=-1$ and $b=5$.

Click here to read the question again

Click here to return to the index

Question 4

Given the functions $I(x)=3 x-2, m(x)=2 x^{2}+4$ and $n(x)=\frac{4}{x}$ find
a. $\quad \operatorname{Im}(x)$
b. $m l(x)$
c. $\operatorname{Imn}(x)$
d. $\operatorname{Imn}(-2)$.

Click here to read the solution to this question

Click here to return to the index

Solution to question 4
$I(x)=3 x-2, m(x)=2 x^{2}+4$ and $n(x)=\frac{4}{x}$
a. $\operatorname{Im}(x)=I\left(2 x^{2}+4\right)=3\left(2 x^{2}+4\right)-2=6 x^{2}+12-2=6 x^{2}+10=2\left(3 x^{2}+5\right)$
b. $m l(x)=m(3 x-2)=2(3 x-2)^{2}+4=2\left(9 x^{2}-12 x+4\right)+4$

$$
=18 x^{2}-24 x+8+4=18 x^{2}-24 x+12=6\left(3 x^{2}-4 x+2\right)
$$

c. $\operatorname{Imn}(x)=\operatorname{Im}\left(\frac{4}{x}\right)=I\left[2\left(\frac{4}{x}\right)^{2}+4\right]=I\left(\frac{32}{x}+4\right)=3\left(\frac{32}{x}+4\right)-2=\frac{96}{x}+12-2$

$$
=\frac{96}{x}+10=\frac{96+10 x}{x}=\frac{2(44+5 x)}{x}
$$

d. $\operatorname{Imn}(-2)=\frac{2[44+5(-2)]}{(-2)}=-34$

Click here to read the question again

Click here to return to the index

Question 5

Given the functions $f: x \rightarrow 7 x-3$ and $g: x \rightarrow \frac{3 x-5}{4}$ find the inverse functions $f^{-1}(x)$ and $g^{-1}(x)$.

Click here to read the solution to this question

Click here to return to the index

Solution to question 5
$f: x \rightarrow 7 x-3$
Let $\quad y=7 x-3$

$$
y+3=7 x
$$

$$
\frac{y+3}{7}=x
$$

Interchange the x and y to give $f^{-1}(x)=\frac{x+3}{7}$
$g: x \rightarrow \frac{3 x-5}{4}$
Let $\quad y=\frac{3 x-5}{4}$

$$
4 y=3 x-5
$$

$4 y+5=3 x$
$\frac{4 y+5}{3}=x$
Interchange the x and y to give $g^{-1}(x)=\frac{4 x+5}{3}$

Click here to read the question again

Click here to return to the index

Question 6

$O A B C$ is a parallelogram where $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O C}=\vec{c}$.

Find in terms of \vec{a} and \vec{c} only
a. $\overrightarrow{A B}$
b. $\overrightarrow{B C}$
c. $\overrightarrow{C A}$
d. $\overrightarrow{B O}$.

Click here to read the solution to this question
Click here to return to the index

Solution to question 6
$O A B C$ is a parallelogram where $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O C}=\vec{c}$.

a. $\overrightarrow{A B}=\overrightarrow{O C}=\vec{c}$
b. $\overrightarrow{B C}=-\overrightarrow{O A}=-\vec{a}$
c. $\overrightarrow{C A}=\overrightarrow{C O}+\overrightarrow{O A}=-\vec{c}+\vec{a}=\vec{a}-\vec{c}$
d. $\overrightarrow{B O}=\overrightarrow{B C}+\overrightarrow{C O}=-\vec{a}-\vec{c}$

Click here to read the question again

Click here to return to the index

Question 7

$O P Q R$ is a trapezium where $R Q=3 O P$ and M is the point on $P Q$ such that $P M=2 M Q$.

Given that $\overrightarrow{O P}=\vec{p}$ and $\overrightarrow{O R}=\vec{r}$ find in terms of \vec{p} and \vec{r} only
a. $\overrightarrow{P R}$
b. $\overrightarrow{R Q}$
c. $\overrightarrow{P Q}$
d. $\overrightarrow{P M}$
e. $\overrightarrow{M R}$

Click here to read the solution to this question
Click here to return to the index

Solution to question 7

$O P Q R$ is a trapezium where $R Q=3 O P$ and M is the point on $P Q$ such that $P M=2 M Q$.

$$
\overrightarrow{O P}=\vec{p} \text { and } \overrightarrow{O R}=\vec{r}
$$

a. $\overrightarrow{P R}=\overrightarrow{P O}+\overrightarrow{O R}=-\vec{p}+\vec{r}=\vec{r}-\vec{p}$
b. $\overrightarrow{R Q}=3 \overrightarrow{O P}=3 \vec{p}$
c. $\overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O R}+\overrightarrow{R Q}=-\vec{p}+\vec{r}+3 \vec{p}=2 \vec{p}+\vec{r}$
d. $\overrightarrow{P M}=\frac{1}{3} \overrightarrow{P Q}=\frac{1}{3}(2 \vec{p}+\vec{r})=\frac{2}{3} \vec{p}+\frac{1}{3} \vec{r}$
e. $\overrightarrow{M R}=\overrightarrow{M Q}+\overrightarrow{Q R}=\frac{2}{3} \overrightarrow{P Q}+\overrightarrow{Q R}=\frac{2}{3}(2 \vec{p}+\vec{r})-3 \vec{p}=\frac{4}{3} \vec{p}+\frac{2}{3} \vec{r}-3 \vec{p}=\frac{2}{3} \vec{r}-\frac{5}{3} \vec{p}$

Click here to read the question again

Click here to return to the index

Question 8

Given the following vectors $\vec{a}=\binom{-2}{3}$ and $\vec{b}=\binom{4}{-5}$. Find the following giving your answers exactly, wherever appropriate.
a. $\vec{a}+\vec{b}$
b. $\vec{a}-\vec{b}$
c. $3 \vec{a}-2 \vec{b}$
d. $|\vec{b}|$
e. $|3 \vec{a}-2 \vec{b}|$

Click here to read the solution to this question
Click here to return to the index

Solution to question 8
$\vec{a}=\binom{-2}{3}$ and $\vec{b}=\binom{4}{-5}$.
a. $\vec{a}+\vec{b}=\binom{-2}{3}+\binom{4}{-5}=\binom{2}{-2}$
b. $\vec{a}-\vec{b}=\binom{-2}{3}-\binom{4}{-5}=\binom{-6}{8}$
c. $3 \vec{a}-2 \vec{b}=3\binom{-2}{3}-2\binom{4}{-5}=\binom{-6}{9}-\binom{8}{-10}=\binom{-14}{19}$
d. $|\vec{b}|=\sqrt{4^{2}+(-5)^{2}}=\sqrt{16+25}=\sqrt{41}$
e. $|3 \vec{a}-2 \vec{b}|=\sqrt{(-14)^{2}+19^{2}}=\sqrt{196+361}=\sqrt{557}$

Click here to read the question again

Click here to return to the index

