I.G.C.S.E. Factorisation \& Simultaneous Equations

Index:

Please click on the question number you want

Question 1

Question 3

Question 5

Question 2
Question 4
Question 6

You can access the solutions from the end of each question

Question 1
Factorise the following expressions completely
a. $x^{2}-5 x$
b. $7 y^{2}-49 y$
c. $3 a b^{2}+6 a^{2} b$
d. $x y z^{2}-x y^{2} z+x^{2} y z$

Click here to read the solution to this question
Click here to return to the index

Solution to question 1
a. $x^{2}-5 x=x(x-5)$
b. $7 y^{2}-49 y=7 y(y-7)$
c. $3 a b^{2}+6 a^{2} b=3 a b(b+2 a)$
d. $x y z^{2}-x y^{2} z+x^{2} y z=x y z(z-y+x)$

Click here to read the question again

Click here to return to the index

Question 2
Factorise the following expressions
a. $a x+x z+a y+y z$
b. $2 a p+6 a q-b p-3 b q$
c. $3 u v-9 s u-t^{2} v+3 s t^{2}$

Click here to read the solution to this question
Click here to return to the index

Solution to question 2
Notice the two brackets are the same. Which now
a. $a x+x z+a y+y z=x(a+z)+y(a+z)$ become a common factor

$$
=(a+z)(x+y)
$$

Notice the sign change
b. $2 a p+6 a q-b p-3 b q=2 a(p+3 q)-b(p+3 q)$

$$
=(p+3 q)(2 a-b)
$$

Notice the sign change
c. $3 u v-9 s u-t^{2} v+3 s t^{2}=3 u(v-3 s)-t^{2}(v-3 s)$

$$
=(v-3 s)\left(3 u-t^{2}\right)
$$

Click here to read the question again

Click here to return to the index

Question 3

Factorise the following quadratic expressions
a. $x^{2}+10 x+24$
b. $x^{2}+2 x-35$
c. $b^{2}-28 b+75$
d. $k^{2}-29 k-170$
e. $6 f^{2}+17 f+5$
f. $25 y^{2}-20 y+4$
g. $14 z^{2}-19 z-3$
h. $a^{2}-9$
i. $x^{2}-\frac{1}{4}$
j. $25 y^{2}-49 x^{2}$
k. $3 x^{3}-27 x$

Click here to read the solution to this question
Click here to return to the index

Solution to question 3

a. $x^{2}+10 x+24$
b. $x^{2}+2 x-35$
product $=24$ sum $=10$
factors $=4,6$
$\Rightarrow x^{2}+4 x+6 x+24$
$=x(x+4)+6(x+4)$
$=(x+4)(x+6)$

$$
\begin{aligned}
& \text { product }=-35 \\
& \text { sum }=2 \\
& \text { factors }=-5,7 \\
& \Rightarrow x^{2}-5 x+7 x+35 \\
&= x(x-5)+7(x-5) \\
&=(x-5)(x+7)
\end{aligned}
$$

c. $b^{2}-28 b+75$
product $=75$ sum $=-28$
factors $=-3,-25$
$\Rightarrow b^{2}-3 b-25 b+75$
$=b(b-3)-25(b-3)$
$=(b-3)(b-25)$
d. $k^{2}-29 k-170$
product $=-170$ sum $=-29$
factors $=-34,5$
$\Rightarrow k^{2}-34 k+5 k-170$

$$
\begin{aligned}
& =k(k-34)+5(k-34) \\
& =(k-34)(k+5)
\end{aligned}
$$

e. $6 f^{2}+17 f+5$
product $=30$
sum $=-17$
factors $=2,15$

$$
\begin{aligned}
& \Rightarrow 6 f^{2}+2 f+15 f+5 \\
& =2 f(3 f+1)+5(3 f+1) \\
& =(3 f+1)(2 f+5)
\end{aligned}
$$

f. $25 y^{2}-20 y+4$
product $=100$
sum $=-20$
factors $=-10,-10$

$$
\Rightarrow 25 y^{2}-10 y-10 y+4
$$

$$
=5 y(5 y-2)-2(5 y-2)
$$

$$
=(5 y-2)^{2}
$$

g. $14 z^{2}-19 z-3$
product $=-42$
sum $=-19$
factors $=2,-21$
$\Rightarrow 14 z^{2}-21 z+2 z-3$
$=7 z(2 z-3)+(2 z-3)$
$=(2 z-3)(7 z+1)$
h. $a^{2}-9=(a+3)(a-3)$
Using
$a^{2}-b^{2}=(a+b)(a-b)$
$a=a, b=3$
i. $x^{2}-\frac{1}{4}=\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}\right)$
j. $25 y^{2}-49 x^{2}=(5 y+7 x)(5 y-7 x)$
k. $3 x^{3}-27 x=3 x\left(x^{2}-9\right)=3 x(x+3)(x-3)$

Click here to read the question again

Question 4

Solve the following simultaneous equations
a. $4 x+3 y=2$
$3 x-4 y=14$
b. $5 x+6 y=5$
$2 x+7 y=2$
c. $3 x-2 y=-5$
$x-2 y=1$
d. $\frac{x}{5}+\frac{y}{4}=-3$
$\frac{4 x}{5}+\frac{7 y}{8}=-2$

Click here to read the solution to this question
Click here to return to the index

Solution to question 4

a. $4 x+3 y=2 \ldots 1 \xrightarrow{\times 4} 16 x+12 y=8 \quad$ Add
$3 x-4 y=14 \ldots 2 \xrightarrow{\times 3} 9 x-12 y=42$
$25 x=50$
$x=2$
substitute $x=2$ into equation 1 we have $4(2)+3 y=2$

$$
\begin{aligned}
8+3 y & =2 \\
3 y & =-6 \\
y & =-2
\end{aligned}
$$

$x=2, y=-2$
b. $5 x+6 y=5 \ldots 1 \xrightarrow{x 2} 10 x+12 y=10 \quad$ Subtract

$$
\begin{aligned}
2 x+7 y=2 \ldots 2 . \xrightarrow{x 5} 10 x+35 y & =10 \\
-23 y & =50 \\
y & =0
\end{aligned}
$$

substitute $y=0$ into equation 1 we have $5 x+6(0)=5$

$$
5 y=5
$$

$$
y=1
$$

$$
x=1, y=0
$$

c. $3 x-2 y=-5 \quad$ Subtract

$$
\begin{aligned}
x-2 y & =1 \\
\hline 2 x \quad & =-6 \\
x & =-3
\end{aligned}
$$

substitute $x=-3$ into equation 1 we have $3(-3)-2 y=-5$

$$
\begin{aligned}
-9-2 y & =-5 \\
-2 y & =4 \\
y & =-2
\end{aligned}
$$

$$
x=-3, y=-2
$$

d. First rearrange both equations into the form $a x+b y=c$.

$$
\begin{aligned}
\frac{x}{5}+\frac{y}{4} & =-3 \Rightarrow \quad \frac{4 x+5 y}{20}=3 \Rightarrow 4 x+5 y=60 \\
\frac{4 x}{5}+\frac{7 y}{8} & =-2 \Rightarrow \frac{32 x+35 y}{40}=-2 \Rightarrow 32 x+35 y=-80
\end{aligned}
$$

Now solving as before we have

$$
\left.\begin{array}{rl}
4 x+5 y & =60 \ldots 1 . \longrightarrow 7 \\
32 x+35 y=-80 \ldots 2 \longrightarrow & 28 x+35 y
\end{array}\right)=420 \quad \text { Subtract } \quad \begin{aligned}
32 x+35 y & =-80 \\
-4 x & =500 \\
x & =-125
\end{aligned}
$$

substitute $x=-125$ into equation 1 we have $4(-125)+5 y=60$

$$
\begin{aligned}
-500+5 y & =60 \\
5 y & =560 \\
y & =112
\end{aligned}
$$

$$
x=-125, y=112
$$

Click here to read the question again

Click here to return to the index

Question 5

José has fifty coins all of them either 2 soles or 5 soles coins. If he has 154 soles altogether, form two equations and solve them.

Click here to read the solution to this question
Click here to return to the index

Solution to question 5

José has fifty coins all of them either 2 soles or 5 soles coins. If he has 154 soles altogether, form two equations and solve them.

Let x be the number of 2 soles coins and y the number of 5 soles coins.
Now form two equations
The total of 2 soles coins and 5 soles coins must add up to 154 soles

$$
\begin{aligned}
2 x+5 y & =154 \ldots 1 . \longrightarrow \begin{aligned}
2 x+5 y & =154 \\
x+y & =50
\end{aligned} \ldots 2 \longrightarrow \begin{aligned}
2 x+2 y & =100 \\
3 y & =54 \\
y & =18
\end{aligned}
\end{aligned}
$$

The number of 2 soles coins and 5 soles coins must add up to 50
substitute $y=18$ into equation 2 we have $x+2(9)=50$

$$
\begin{array}{r}
x+18=50 \\
x=32
\end{array}
$$

José has 32 two soles coins and 18 five soles coins.

Click here to read the question again

Click here to return to the index

Question 6

A ship can travel 20 knots with the current and 14 knots against it. Form two equations and find the speed of the current and the speed of the ship in still water.

Click here to read the solution to this question
Click here to return to the index

Solution to question 6

A ship can travel 20 knots with the current and 14 knots against it. Form two equations and find the speed of the current and the speed of the ship in still water.

Let the speed of the ship be x knots and the speed of the current be y knots.
Now form two equations

$$
\begin{aligned}
x+y & =20 \ldots 1 . \\
x-y & =14 \ldots 2 .
\end{aligned} \quad \text { Add } \quad \text { The ship can travel } 14 \text { knots against the current }
$$

substitute $x=17$ into equation 1 we have $17+y=20$

$$
y=3
$$

The ship's speed is 17 knots and the current is 3 knots.

Click here to read the question again

Click here to return to the index

