I.G.C.S.E. Circle Geometry

Index:
Please click on the question number you want

Question 1

Question 2
Question 3
You can access the solutions from the end of each question

Question 1

In the diagrams below, find the angles marked with letters, giving reasons. In each diagram O denotes the centre of the circle. Diagrams not drawn to scale.
a.

b.

C.

d.

Click here to read the solution to this question

Click here to return to the index

Solution to question 1

a.

b.

$$
p=90^{\circ}-54^{\circ}=36^{\circ}
$$

(angles in a semicircle).
$q=90^{\circ}-36^{\circ}=54^{\circ}$
(tangent radius property)
or $q=54^{\circ}$
(alternate segment theorem)
C.

$\triangle A B C$ is isosceles as $A B=C B$
as tangents drawn from a point out a circle to a circle are of equal length.
$w=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}, y=65^{\circ}$
$O \hat{A} C=O \hat{C} A$, as $\triangle A O C$ is isosceles.
$O \hat{A} C=90^{\circ}-65^{\circ}=25^{\circ}$
(tangent radius property)
$z=180-2 \times 25^{\circ}=130^{\circ}$
Click here to read the question again
Click here to return to the index
d.

$g=47^{\circ}$
(angles in the same segment)
$\left(g+34^{\circ}\right)+\left(h+54^{\circ}\right)=180^{\circ}$
(opposite angles in a cyclic quadrilateral).
$h=180^{\circ}-47^{\circ}-34^{\circ}-54^{\circ}=45^{\circ}$
$u=44^{\circ}$
(angles in the same segment)
$v=44^{\circ}$
(alternate segment theore

Question 2
In the diagram below if $F \hat{H} G=35^{\circ}$ and $E \hat{H} O=21^{\circ}$, find, giving reasons:
a. FÊH
b. $F \hat{O} H$
c. $O \hat{F} H$
d. $E \hat{H} F$
e. $H \hat{F} E$

Click here to read the solution to this question
Click here to return to the index

Solution to question 2

a. $F \hat{E} H=35^{\circ}$ (alternate segment theorem).
b. $F \hat{O} H=2 \times 35^{\circ}=70^{\circ}$ (angle at the centre).
c. $\quad \triangle F O H$ is isosceles $O F=O H$ (equal radii) $\Rightarrow O \hat{F} H=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$.
d. $E \hat{H} F=90^{\circ}-35^{\circ}-21^{\circ}=34^{\circ}$ (tangent radius property).
e. $H \hat{F} E=180^{\circ}-35^{\circ}-34^{\circ}=111^{\circ}$ (angle sum of $\triangle E F H$).

Click here to read the question again

Click here to return to the index

Question 3

For the diagram find, giving reasons:
a. $A \hat{C} B$
b. CÂB
c. $\quad A \hat{B} C$

Click here to read the solution to this question
Click here to return to the index

Solution to question 3

a. Δ 's ACF and $C B F$, are isosceles. (Two tangents drawn from a point from outside a circle are equal).
Hence $A \hat{C} F=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$ and $E \hat{B} C=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$
$A \hat{C} B=180^{\circ}-70^{\circ}-75^{\circ}=35^{\circ}$
Considering $\triangle D E F, E \hat{D} F=180^{\circ}-40^{\circ}-30^{\circ}=110^{\circ}$.
b. Δ 's ACF and CBF, are isosceles. (Two tangents drawn from a point from outside a circle are equal).
Hence $D \hat{A} B=\frac{180^{\circ}-110^{\circ}}{2}=35^{\circ}$ and $C \hat{A} F=\frac{180^{\circ}-40^{\circ}}{2}=70^{\circ}$
$C \hat{A} B=180^{\circ}-35^{\circ}-70^{\circ}=75^{\circ}$
c. $\quad \Delta$'s $B C E$ and $A B D$, are isosceles. (Two tangents drawn from a point from outside a circle are equal).
Hence $D \hat{B} A=\frac{180^{\circ}-110^{\circ}}{2}=35^{\circ}$ and $E \hat{B} C=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$
$A \hat{B} C=180^{\circ}-35^{\circ}-75^{\circ}=70^{\circ}$

Click here to read the question again

Click here to return to the index

