I.G.C.S.E. Circle Geometry

Index:

Please click on the question number you want

Question 1

Question 2

Question 3

You can access the solutions from the end of each question

Question 1

In the diagrams below, find the angles marked with letters, **giving reasons**. In each diagram O denotes the centre of the circle. Diagrams not drawn to scale.

Click here to read the solution to this question

Solution to question 1

 $p = 90^{\circ} - 54^{\circ} = 36^{\circ}$ (angles in a semicircle). $q = 90^{\circ} - 36^{\circ} = 54^{\circ}$ (tangent radius property) or $q = 54^{\circ}$ (alternate segment theorem)

 $\triangle ABC$ is isosceles as AB = CBas tangents drawn from a point out a circle to a circle are of equal length.

 $w = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}, y = 65^{\circ}$ $O\hat{A}C = O\hat{C}A, \text{ as } \Delta AOC \text{ is isosceles.}$ $O\hat{A}C = 90^{\circ} - 65^{\circ} = 25^{\circ}$ (tangent radius property) $z = 180 - 2 \times 25^{\circ} = 130^{\circ}$

 $u = 44^{\circ}$ (angles in the same segment) $v = 44^{\circ}$ (alternate segment theore

d.

b.

$$\left(g+34^{\circ}\right)+\left(h+54^{\circ}\right)=180^{\circ}$$

(opposite angles in a cyclic quadrilateral). $h = 180^{\circ} - 47^{\circ} - 34^{\circ} - 54^{\circ} = 45^{\circ}$

Click here to read the question again

Click here to return to the index

a.

c.

Question 2

In the diagram below if $\hat{FHG} = 35^{\circ}$ and $\hat{EHO} = 21^{\circ}$, find, **giving reasons**:

- a. FÊH
- **b.** FÔH
- **c.** OÊH
- d. EĤF
- e. HÊE

Click here to read the solution to this question

Solution to question 2

- **a.** $F\hat{E}H = 35^{\circ}$ (alternate segment theorem).
- **b.** $F\hat{O}H = 2 \times 35^{\circ} = 70^{\circ}$ (angle at the centre).
- **c.** ΔFOH is isosceles OF = OH (equal radii) $\Rightarrow O\hat{F}H = \frac{180^{\circ} 70^{\circ}}{2} = 55^{\circ}$.
- **d.** $E\hat{H}F = 90^{\circ} 35^{\circ} 21^{\circ} = 34^{\circ}$ (tangent radius property).
- **e.** $H\hat{F}E = 180^{\circ} 35^{\circ} 34^{\circ} = 111^{\circ}$ (angle sum of ΔEFH).

Click here to read the question again

Question 3

For the diagram find, **giving reasons**:

- a. AĈB
- **b.** CÂB
- c. AÊC

Click here to read the solution to this question

Solution to question 3

a. Δ 's ACF and *CBF*, are isosceles. (Two tangents drawn from a point from outside a circle are equal).

Hence $A\hat{C}F = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$ and $E\hat{B}C = \frac{180^{\circ} - 30^{\circ}}{2} = 75^{\circ}$ $A\hat{C}B = 180^{\circ} - 70^{\circ} - 75^{\circ} = 35^{\circ}$

Considering $\triangle DEF$, $\hat{EDF} = 180^{\circ} - 40^{\circ} - 30^{\circ} = 110^{\circ}$.

- **b.** Δ 's ACF and *CBF*, are isosceles. (Two tangents drawn from a point from outside a circle are equal). Hence $D\hat{A}B = \frac{180^{\circ} - 110^{\circ}}{2} = 35^{\circ}$ and $C\hat{A}F = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$ $C\hat{A}B = 180^{\circ} - 35^{\circ} - 70^{\circ} = 75^{\circ}$
- c. Δ 's *BCE* and *ABD*, are isosceles. (Two tangents drawn from a point from outside a circle are equal). Hence $D\hat{B}A = \frac{180^{\circ} - 110^{\circ}}{2} = 35^{\circ}$ and $E\hat{B}C = \frac{180^{\circ} - 30^{\circ}}{2} = 75^{\circ}$ $A\hat{B}C = 180^{\circ} - 35^{\circ} - 75^{\circ} = 70^{\circ}$

Click here to read the question again