4 Answer the whole of this question on a sheet of graph paper.

x	-4	-3	-2	-1	0	1	2	3	4
$\mathrm{f}(x)$	-8	4.5	8	5.5	0	-5.5	-8	-4.5	8

(a) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 4 units on the y-axis, draw axes for $-4 \leqslant x \leqslant 4$ and $-8 \leqslant y \leqslant 8$.
Draw the curve $y=\mathrm{f}(x)$ using the table of values given above.
(b) Use your graph to solve the equation $\mathrm{f}(x)=0$.
(c) On the same grid, draw $y=\mathrm{g}(x)$ for $-4 \leqslant x \leqslant 4$, where $\mathrm{g}(x)=x+1$.
(d) Write down the value of
(i) $\mathrm{g}(1)$,
(ii) $\mathrm{fg}(1)$,
(iii) $\mathrm{g}^{-1}(4)$,
(iv) the positive solution of $\mathrm{f}(x)=\mathrm{g}(x)$.
(e) Draw the tangent to $y=\mathrm{f}(x)$ at $x=3$. Use it to calculate an estimate of the gradient of the curve at this point.

2 Answer all of this question on a sheet of graph paper.

(a) $\mathrm{f}(x)=x^{2}-x-3$.

x	-3	-2	-1	0	1	2	3	4
$\mathrm{f}(x)$	p	3	-1	-3	q	-1	3	r

(i) Find the values of p, q and r.
(ii) Draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant 4$.

Use a scale of 1 cm to represent 1 unit on each axis.
(iii) By drawing a suitable line, estimate the gradient of the graph at the point where $x=-1$.
(b) $\mathrm{g}(x)=6-\frac{x^{3}}{3}$.

x	-2	-1	0	1	2	3
$\mathrm{~g}(x)$	8.67	u	v	5.67	3.33	-3

(i) Find the values of u and v.
(ii) On the same grid as part (a) (ii) draw the graph of $y=\mathrm{g}(x)$ for $-2 \leqslant x \leqslant 3$.
(c) (i) Show that the equation $\mathrm{f}(x)=\mathrm{g}(x)$ simplifies to $x^{3}+3 x^{2}-3 x-27=0$.
(ii) Use your graph to write down a solution of the equation $x^{3}+3 x^{2}-3 x-27=0$.

4 Answer the whole of this question on a sheet of graph paper.

The table gives values of

$$
\mathrm{f}(x)=2^{x}, \text { for }-2 \leqslant x \leqslant 4 .
$$

x	-2	-1	0	1	2	3	4
$\mathrm{f}(x)$	p	0.5	q	2	4	r	16

(a) Find the values of p, q and r.
(b) Using a scale of 2 cm to 1 unit on the x-axis and 1 cm to 1 unit on the y-axis, draw the graph of $y=\mathrm{f}(x)$ for $-2 \leqslant x \leqslant 4$.
(c) Use your graph to solve the equation $2^{x}=7$.
(d) What value does $\mathrm{f}(x)$ approach as x decreases?
(e) By drawing a tangent, estimate the gradient of the graph of $y=\mathrm{f}(x)$ when $x=1.5$.
(f) On the same grid draw the graph of $y=2 x+1$ for $0 \leqslant x \leqslant 4$.
(g) Use your graph to find the non-integer solution of $2^{x}=2 x+1$.

The diagram shows the accurate graph of $y=\mathrm{f}(x)$.
(a) Use the graph to find
(i) $\mathrm{f}(0)$,
(ii) $\mathrm{f}(8)$.
(b) Use the graph to solve
(i) $\mathrm{f}(x)=0$,
(ii) $\mathrm{f}(x)=5$.
(c) k is an integer for which the equation $\mathrm{f}(x)=k$ has exactly two solutions.

Use the graph to find the two values of k.
(d) Write down the range of values of x for which the graph of $y=\mathrm{f}(x)$ has a negative gradient.
(e) The equation $\mathrm{f}(x)+x-1=0$ can be solved by drawing a line on the grid.
(i) Write down the equation of this line.
(ii) How many solutions are there for $\mathrm{f}(x)+x-1=0$?

8 Answer the whole of this question on a sheet of graph paper.
Use one side for your working and one side for your graphs.

Alaric invests \$100 at 4\% per year compound interest.
(a) How many dollars will Alaric have after 2 years?
(b) After x years, Alaric will have y dollars.

He knows a formula to calculate y.
The formula is $y=100 \times 1.04^{x}$

x (Years)	0	10	20	30	40
y (Dollars)	100	p	219	q	480

Use this formula to calculate the values of p and q in the table.
(c) Using a scale of 2 cm to represent 5 years on the x-axis and 2 cm to represent $\$ 50$ on the y-axis, draw an x-axis for $0 \leqslant x \leqslant 40$ and a y-axis for $0 \leqslant y \leqslant 500$.

Plot the five points in the table and draw a smooth curve through them.
(d) Use your graph to estimate
(i) how many dollars Alaric will have after 25 years,
(ii) how many years, to the nearest year, it takes for Alaric to have $\$ 200$.
(e) Beatrice invests $\$ 100$ at 7% per year simple interest.
(i) Show that after 20 years Beatrice has $\$ 240$.
(ii) How many dollars will Beatrice have after 40 years?
(iii) On the same grid, draw a graph to show how the $\$ 100$ which Beatrice invests will increase during the 40 years.
(f) Alaric first has more than Beatrice after n years.

Use your graphs to find the value of n.

5 (a) The table shows some values for the equation $y=\frac{x}{2}-\frac{2}{x}$ for $-4 \leqslant x \leqslant-0.5$ and $0.5 \leqslant x \leqslant 4$.

x	-4	-3	-2	-1.5	-1	-0.5	0.5	1	1.5	2	3	4
y	-1.5	-0.83	0	0.58			-3.75		-0.58	0	0.83	1.5

(i) Write the missing values of y in the empty spaces.
(ii) On the grid, draw the graph of $y=\frac{x}{2}-\frac{2}{x}$ for $-4 \leqslant x \leqslant-0.5$ and $0.5 \leqslant x \leqslant 4$.

(b) Use your graph to solve the equation $\frac{x}{2}-\frac{2}{x}=1$.

$$
\text { Answer(b) } x=
$$

\qquad or $x=$
(c) (i) By drawing a tangent, work out the gradient of the graph where $x=2$.

Answer(c)(i)
(ii) Write down the gradient of the graph where $x=-2$.

> Answer(c)(ii)
(d) (i) On the grid, draw the line $y=-x$ for $-4 \leqslant x \leqslant 4$.
(ii) Use your graphs to solve the equation $\frac{x}{2}-\frac{2}{x}=-x$.

$$
\text { Answer(d)(ii) } x=\text {............. or } x=
$$

(e) Write down the equation of a straight line which passes through the origin and does not intersect the graph of $y=\frac{x}{2}-\frac{2}{x}$.
(a) Find the value of
(i) $\mathrm{f}\left(-\frac{1}{2}\right)$,
Answer(a)(i)
(ii) $\mathrm{g}(-5)$,

> Answer(a)(ii)
(iii) $h(-3)$.

> Answer(a)(iii)
(b) Find the inverse function $\mathrm{f}^{-1}(x)$.

$$
\operatorname{Answer}(b) \mathrm{f}^{-1}(x)=
$$

(c) $\mathrm{g}(x)=z$.

Find x in terms of z.

$$
\text { Answer(c) } x=
$$

(d) Find $\operatorname{gf}(x)$, in its simplest form.
(e) $\mathrm{h}(x)=512$.

Find the value of x.

$$
\text { Answer(e) } x=
$$

(f) Solve the equation $2 \mathrm{f}(x)+\mathrm{g}(x)=0$, giving your answers correct to 2 decimal places.

Answer(f) $x=$
or $x=$ \qquad
(g) Sketch the graph of
(i) $y=\mathrm{f}(x)$,
(ii) $y=\mathrm{g}(x)$.

(i) $y=\mathrm{f}(x)$
(ii) $y=\mathrm{g}(x)$
$8 \quad$ (a) $\mathrm{f}(x)=2^{x}$
Complete the table.

x	-2	-1	0	1	2	3	4
$y=\mathrm{f}(x)$		0.5	1	2	4		

(b) $\mathrm{g}(x)=x(4-x)$

Complete the table.

x	-1	0	1	2	3	4
$y=g(x)$		0	3		3	0

(c) On the grid, draw the graphs of
(i) $y=\mathrm{f}(x)$ for $-2 \leqslant x \leqslant 4$,
(ii) $y=\mathrm{g}(x)$ for $-1 \leqslant x \leqslant 4$.

(d) Use your graphs to solve the following equations.
(i) $\mathrm{f}(x)=10$

Answer(d)(i) $x=$
(ii) $\mathrm{f}(x)=\mathrm{g}(x)$

$$
\text { Answer(d)(ii) } x=\ldots \text { or } x=
$$

(iii) $\mathrm{f}^{-1}(x)=1.7$

$$
\text { Answer(d)(iii) } x=
$$

6 (a) Complete the table of values for $y=x+\frac{1}{x}$.

x	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
y	-4.3	-3.3			-2.5	2.5			3.3	4.3

[2]

On the grid, draw the graph of $y=x+\frac{1}{x}$ for $-4 \leqslant x \leqslant-0.5$ and $0.5 \leqslant x \leqslant 4$.
Six of the ten points have been plotted for you.
(c) There are three integer values of k for which the equation $\quad x+\frac{1}{x}=k \quad$ has no solutions. Write down these three values of k.

Answer(c) $k=$ \qquad or $k=$ \qquad or $k=$ \qquad
(d) Write down the ranges of x for which the gradient of the graph of $y=x+\frac{1}{x}$ is positive. Answer(d)
(e) To solve the equation $x+\frac{1}{x}=2 x+1$, a straight line can be drawn on the grid.
(i) Draw this line on the grid for $-2.5 \leqslant x \leqslant 1.5$.
(ii) On the grid, show how you would find the solutions.
(iii) Show how the equation $x+\frac{1}{x}=2 x+1$ can be rearranged into the form $x^{2}+b x+c=0$ and find the values of b and c.

$$
\text { Answer(e)(iii) } b=
$$

$$
c=
$$

5 Answer the whole of this question on a sheet of graph paper.

(a) The table gives values of $\mathrm{f}(x)=\frac{24}{x^{2}}+x^{2}$ for $0.8 \leqslant x \leqslant 6$.

x	0.8	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
$\mathrm{f}(x)$	38.1	25	12.9	10	10.1	11.7	l	m	n	26	31	36.7

Calculate, correct to 1 decimal place, the values of l, m and n.
(b) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 5 units on the y-axis, draw an x-axis for $0 \leqslant x \leqslant 6$ and a y-axis for $0 \leqslant y \leqslant 40$.

Draw the graph of $y=\mathrm{f}(x)$ for $0.8 \leqslant x \leqslant 6$.
(c) Draw the tangent to your graph at $x=1.5$ and use it to calculate an estimate of the gradient of the curve at this point.
(d) (i) Draw a straight line joining the points $(0,20)$ and $(6,32)$.
(ii) Write down the equation of this line in the form $y=m x+c$.
(iii) Use your graph to write down the x-values of the points of intersection of this line and the curve $y=\mathrm{f}(x)$.
(iv) Draw the tangent to the curve which has the same gradient as your line in part $\mathbf{d}(\mathbf{i})$.
(v) Write down the equation for the tangent in part d(iv).

4 Answer the whole of this question on a sheet of graph paper.

t	0	1	2	3	4	5	6	7
$\mathrm{f}(t)$	0	25	37.5	43.8	46.9	48.4	49.2	49.6

(a) Using a scale of 2 cm to represent 1 unit on the horizontal t-axis and 2 cm to represent 10 units on the y-axis, draw axes for $0 \leqslant t \leqslant 7$ and $0 \leqslant y \leqslant 60$.
Draw the graph of the curve $y=\mathrm{f}(t)$ using the table of values above.
(b) $\mathrm{f}(t)=50\left(1-2^{-t}\right)$.
(i) Calculate the value of $f(8)$ and the value of $f(9)$.
(ii) Estimate the value of $\mathrm{f}(t)$ when t is large.
(c) (i) Draw the tangent to $y=\mathrm{f}(t)$ at $t=2$ and use it to calculate an estimate of the gradient of the curve at this point.
(ii) The function $\mathrm{f}(t)$ represents the speed of a particle at time t. Write down what quantity the gradient gives.
(d) (i) On the same grid, draw $y=\mathrm{g}(t)$ where $\mathrm{g}(t)=6 t+10$, for $0 \leqslant t \leqslant 7$.
(ii) Write down the range of values for t where $\mathrm{f}(t)>\mathrm{g}(t)$.
(iii) The function $\mathrm{g}(t)$ represents the speed of a second particle at time t.

State whether the first or second particle travels the greater distance for $0 \leqslant t \leqslant 7$. You must give a reason for your answer.

7 A sketch of the graph of the quadratic function $y=p x^{2}+q x+r$ is shown in the diagram.

The graph cuts the x-axis at K and L.
The point M lies on the graph and on the line of symmetry.
(a) When $p=1, \quad q=-2, \quad r=-3$, find
(i) the y-coordinate of the point where $x=4$,
(ii) the coordinates of K and L,
(iii) the coordinates of M.
(b) Describe how the above sketch of the graph would change in each of the following cases.
(i) p is negative.
(ii) $p=1, q=r=0$.
(c) Another quadratic function is $y=a x^{2}+b x+c$.
(i) Its graph passes through the origin.

Write down the value of c.
(ii) The graph also passes through the points $(3,0)$ and $(4,8)$.

Find the values of a and b.

5 Answer the whole of this question on one sheet of graph paper.

$$
\mathrm{f}(x)=1-\frac{1}{x^{2}}, x \neq 0
$$

(a)

x	-3	-2	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	2	3
$\mathrm{f}(x)$	p	0.75	0	-3	-5.25	q	q	-5.25	-3	0	0.75	p

Find the values of p and q.
(b) (i) Draw an x-axis for $-3 \leqslant x \leqslant 3$ using 2 cm to represent 1 unit and a y-axis for $-11 \leqslant y \leqslant 2$ using 1 cm to represent 1 unit.
(ii) Draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant-0.3$ and for $0.3 \leqslant x \leqslant 3$.
(c) Write down an integer k such that $\mathrm{f}(x)=k$ has no solutions.
(d) On the same grid, draw the graph of $y=2 x-5$ for $-3 \leqslant x \leqslant 3$.
(e) (i) Use your graphs to find solutions of the equation $1-\frac{1}{x^{2}}=2 x-5$.
(ii) Rearrange $1-\frac{1}{x^{2}}=2 x-5$ into the form $a x^{3}+b x^{2}+c=0$, where a, b and c are integers.
(f) (i) Draw a tangent to the graph of $y=\mathrm{f}(x)$ which is parallel to the line $y=2 x-5$.
(ii) Write down the equation of this tangent.

4 Answer the whole of this question on a sheet of graph paper.

$$
\mathrm{f}(x)=3 x-\frac{1}{x^{2}}+3, x \neq 0
$$

(a) The table shows some values of $\mathrm{f}(x)$.

x	-3	-2.5	-2	-1.5	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	1.5	2	2.5	3
$\mathrm{f}(x)$	p	-4.7	-3.3	-1.9	-1	-2.5	-4.5	-9.0	-7.2	-2.1	0.5	q	7.1	8.8	10.3	r

Find the values of p, q and r.
(b) Draw axes using a scale of 1 cm to represent 0.5 units for $-3 \leqslant x \leqslant 3$ and 1 cm to represent 2 units for $-10 \leqslant y \leqslant 12$.
(c) On your grid, draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant-0.3$ and $0.3 \leqslant x \leqslant 3$.
(d) Use your graph to solve the equations
(i) $3 x-\frac{1}{x^{2}}+3=0$,
(ii) $3 x-\frac{1}{x^{2}}+7=0$.
(e) $\mathrm{g}(x)=3 x+3$.

On the same grid, draw the graph of $y=\mathrm{g}(x)$ for $-3 \leqslant x \leqslant 3$.
(f) (i) Describe briefly what happens to the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ for large positive or negative values of x.
(ii) Estimate the gradient of $y=\mathrm{f}(x)$ when $x=100$.

The diagram shows a sketch of $y=x^{2}+1$ and $y=4-x$.
(a) Write down the co-ordinates of
(i) the point C,
(ii) the points of intersection of $y=4-x$ with each axis.
(b) Write down the gradient of the line $y=4-x$.
(c) Write down the range of values of x for which the gradient of the graph of $y=x^{2}+1$ is negative.
(d) The two graphs intersect at A and B.

Show that the x co-ordinates of A and B satisfy the equation $x^{2}+x-3=0$.
(e) Solve the equation $x^{2}+x-3=0$, giving your answers correct to 2 decimal places.
(f) Find the co-ordinates of the mid-point of the straight line $A B$.

3 Answer the whole of this question on a sheet of graph paper.

The table shows some of the values of the function $\mathrm{f}(x)=x^{2}-\frac{1}{x}, \quad x \neq 0$.

x	-3	-2	-1	-0.5	-0.2	0.2	0.5	1	2	3
y	9.3	4.5	2.0	2.3	p	-5.0	-1.8	q	3.5	r

(a) Find the values of p, q and r, correct to 1 decimal place.
(b) Using a scale of 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw an x-axis for $-3 \leqslant x \leqslant 3$ and a y-axis for $-6 \leqslant y \leqslant 10$.

Draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant-0.2$ and $0.2 \leqslant x \leqslant 3$.
(c) (i) By drawing a suitable straight line, find the three values of x where $\mathrm{f}(x)=-3 x$.
(ii) $x^{2}-\frac{1}{x}=-3 x$ can be written as $x^{3}+a x^{2}+b=0$.

Find the values of a and b.
(d) Draw a tangent to the graph of $y=\mathrm{f}(x)$ at the point where $x=-2$.

Use it to estimate the gradient of $y=\mathrm{f}(x)$ when $x=-2$.

The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ are shown above.
(a) Find the value of
(i) $\mathrm{f}(-2)$,
$g(0)$.

> Answer(a)(ii)
(b) Use the graphs to solve
(i) the equation $\mathrm{f}(x)=20$,

$$
\operatorname{Answer}(b)(\mathrm{i}) x=\quad \text { or } x=
$$

(ii) the equation $\mathrm{f}(x)=\mathrm{g}(x)$,

$$
\begin{equation*}
\operatorname{Answer}(b)(\mathrm{ii)} x=\quad \text { or } x= \tag{2}
\end{equation*}
$$

(iii) the inequality $\mathrm{f}(x)<\mathrm{g}(x)$.

> Answer(b)(iii)
(c) Use the points A and B to find the gradient of $y=\mathrm{g}(x)$ as an exact fraction.

Answer(c)

(d) On the grid, draw the graph of $y=\mathrm{g}(x)-10$.
(e) (i) Draw the tangent to the graph of $y=\mathrm{f}(x)$ at $(-3,-27)$.
(ii) Write down the equation of this tangent.
Answer(e)(ii)
(f) A region, R, contains points whose co-ordinates satisfy the inequalities

$$
-3 \leqslant x \leqslant-2, \quad y \leqslant 40 \quad \text { and } \quad y \geqslant \mathrm{~g}(x)
$$

On the grid, draw suitable lines and label this region R.

NOT TO
SCALE
farmer makes a rectangular enclosure for his animals.
He uses a wall for one side and a total of 72 metres of fencing for the other three sides.
The enclosure has width x metres and area A square metres.
(a) Show that $A=72 x-2 x^{2}$.

Answer (a)
(b) Factorise completely $72 x-2 x^{2}$.

> Answer(b)
(c) Complete the table for $A=72 x-2 x^{2}$.

x	0	5	10	15	20	25	30	35
A	0	310	520			550	360	

(d) Draw the graph of $A=72 x-2 x^{2}$ for $0 \leqslant x \leqslant 35$ on the grid opposite.

Work out
(i) $\mathrm{f}(2)$,

> Answer(a)(i)
(ii) $\mathrm{g}(-2)$,
Answer(a)(ii)
(iii) $\mathrm{ff}(x)$ in its simplest form,

$$
\text { Answer(a)(iii) } \mathrm{ff}(x)=
$$

(iv) $\mathrm{f}^{-1}(x)$, the inverse of $\mathrm{f}(x)$,

$$
\begin{equation*}
\operatorname{Answer}(a)(\mathrm{iv}) \mathrm{f}^{-1}(x)= \tag{2}
\end{equation*}
$$

(v) x when $\operatorname{gf}(x)=4$.

$$
\operatorname{Answer}(a)(\mathrm{v}) x=
$$

$$
\text { or } x=
$$

(b) y is inversely proportional to x and $y=8$ when $x=2$.

Find,
(i) an equation connecting y and x,
(ii) y when $x=\frac{1}{2}$.

$$
\mathrm{f}(x)=6+x^{2}
$$

$$
\mathrm{g}(x)=4 x-1
$$

(a) Find
(i) $\mathrm{g}(3)$,
\qquad
(ii) $\mathrm{f}(-4)$.

> Answer(a)(ii)
(b) Find the inverse function $\mathrm{g}^{-1}(x)$.
(c) Find $\operatorname{fg}(x)$ in its simplest form.

$$
\operatorname{Answer}(c) \operatorname{fg}(x)=
$$

(d) Solve the equation $\operatorname{gg}(x)=3$.

7 (a) Complete the table for the function $\mathrm{f}(x)=\frac{2}{x}-x^{2}$.

x	-3	-2	-1	-0.5	-0.2		0.2	0.5	1	2	3
$\mathrm{f}(x)$	-9.7	-5			-10.0		10.0	3.75	1		-8.3

(b) On the grid draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant-0.2$ and $0.2 \leqslant x \leqslant 3$.

(c) Use your graph to
(i) solve $\mathrm{f}(x)=2$,

$$
\begin{equation*}
\operatorname{Answer}(c)(\mathrm{i}) x= \tag{1}
\end{equation*}
$$

(ii) find a value for k so that $\mathrm{f}(x)=k$ has 3 solutions.

$$
\operatorname{Answer}(c)(\mathrm{ii)} k=
$$

(d) Draw a suitable line on the grid and use your graphs to solve the equation $\frac{2}{x}-x^{2}=5 x$.

$$
\text { Answer(d) } x=\ldots \text { or } x=
$$

(e) Draw the tangent to the graph of $y=\mathrm{f}(x)$ at the point where $x=-2$.

Use it to calculate an estimate of the gradient of $y=\mathrm{f}(x)$ when $x=-2$.

7 (a) Complete the table for the function $\mathrm{f}(x)=\frac{x^{3}}{10}+1$.

x	-4	-3	-2	-1	0	1	2	3
$\mathrm{f}(x)$		-1.7	0.2	0.9	1	1.1	1.8	

(b) On the grid, draw the graph of $y=\mathrm{f}(x)$ for $-4 \leqslant x \leqslant 3$.

[4]
(c) Complete the table for the function $\mathrm{g}(x)=\frac{4}{x}, x \neq 0$.

x	-4	-3	-2	-1	1	2	3
$\mathrm{~g}(x)$	-1	-1.3				2	1.3

(d) On the grid, draw the graph of $y=\mathrm{g}(x)$ for $-4 \leqslant x \leqslant-1$ and $1 \leqslant x \leqslant 3$.
(e) (i) Use your graphs to solve the equation $\frac{x^{3}}{10}+1=\frac{4}{x}$.

$$
\text { Answer(e)(i) } x=\ldots \text { or } x=
$$

(ii) The equation $\frac{x^{3}}{10}+1=\frac{4}{x}$ can be written as $x^{4}+a x+b=0$.

Find the values of a and b.

$$
\text { Answer(e)(ii) } a=
$$

$$
b=
$$

