x	-4	-3	-2	-1	0	1	2	3	4
f(<i>x</i>)	-8	4.5	8	5.5	0	-5.5	-8	-4.5	8

- (a) Using a scale of 2 cm to represent 1 unit on the *x*-axis and 2 cm to represent 4 units on the *y*-axis, draw axes for -4 ≤ x ≤ 4 and -8 ≤ y ≤ 8. Draw the curve y = f(x) using the table of values given above. [5]
- (b) Use your graph to solve the equation f(x) = 0.
- (c) On the same grid, draw y = g(x) for $-4 \le x \le 4$, where g(x) = x + 1. [2]

[2]

[4]

[3]

[2]

- (d) Write down the value of
 - (i) g(1),
 - (ii) fg(1),
 - (iii) $g^{-1}(4)$,
 - (iv) the **positive** solution of f(x) = g(x).
- (e) Draw the tangent to y = f(x) at x = 3. Use it to calculate an estimate of the gradient of the curve at this point. [3]

2 Answer all of this question on a sheet of graph paper.

(a) $f(x) = x^2 - x - 3$.

x	-3	- 2	-1	0	1	2	3	4
f(<i>x</i>)	р	3	-1	-3	q	-1	3	r

- (i) Find the values of p, q and r.
- (ii) Draw the graph of y = f(x) for $-3 \le x \le 4$. Use a scale of 1 cm to represent 1 unit on each axis. [4]
- (iii) By drawing a suitable line, estimate the gradient of the graph at the point where x = -1. [3]

(b)
$$g(x) = 6 - \frac{x^3}{3}$$
.

x	- 2	-1	0	1	2	3
g(<i>x</i>)	8.67	и	v	5.67	3.33	-3

- (i) Find the values of *u* and *v*.
- (ii) On the same grid as part (a) (ii) draw the graph of y = g(x) for $-2 \le x \le 3$. [4]
- (c) (i) Show that the equation f(x) = g(x) simplifies to $x^3 + 3x^2 3x 27 = 0$. [1]
 - (ii) Use your graph to write down a solution of the equation $x^3 + 3x^2 3x 27 = 0.$ [1]

The table gives values of $f(x) = 2^x$, for $-2 \le x \le 4$.

x	-2	-1	0	1	2	3	4
f(<i>x</i>)	р	0.5	q	2	4	r	16

(a) Find the values of p, q and r.

(b)	Using a scale of 2 cm to 1 unit on the x-axis and 1 cm to 1 unit on the y-axis, draw the graph of	
	$y = f(x)$ for $-2 \le x \le 4$.	[5]
(c)	Use your graph to solve the equation $2^x = 7$.	[1]
(d)	What value does $f(x)$ approach as <i>x</i> decreases?	[1]
(e)	By drawing a tangent, estimate the gradient of the graph of $y = f(x)$ when $x = 1.5$.	[3]
(f)	On the same grid draw the graph of $y = 2x + 1$ for $0 \le x \le 4$.	[2]
(g)	Use your graph to find the non-integer solution of $2^x = 2x + 1$.	[2]

[3]

The diagram shows the accurate graph of y = f(x).

-10

- (a) Use the graph to find
 - (i) f(0), [1]

х

(ii) f(8). [1]

(b) Use the graph to solve

- (i) f(x) = 0, [2]
- (ii) f(x) = 5. [1]

(d)	Write down the range of values of x for which the graph of $y = f(x)$ has a negative gradient.	[2]
	Use the graph to find the two values of <i>k</i> .	[2]
(c)	k is an integer for which the equation $f(x) = k$ has exactly two solutions.	

(e) The equation f(x) + x - 1 = 0 can be solved by drawing a line on the grid.

(i)	Write down the equation of this line.	[1]
(ii)	How many solutions are there for $f(x) + x - 1 = 0$?	[1]

8 Answer the whole of this question on a sheet of graph paper. Use one side for your working and one side for your graphs.

Alaric invests \$100 at 4% per year compound interest.

- (a) How many dollars will Alaric have after 2 years?
- (b) After x years, Alaric will have y dollars. He knows a formula to calculate y. The formula is $y = 100 \times 1.04^{x}$

x (Years)	0	10	20	30	40
y (Dollars)	100	р	219	q	480

Use this formula to calculate the values of p and q in the table. [2] (c) Using a scale of 2 cm to represent 5 years on the x-axis and 2 cm to represent \$50 on the y-axis, draw

	Plot the five points in the table and draw a smooth curve through them.	[5]
(d)	Use your graph to estimate	
	(i) how many dollars Alaric will have after 25 years,	[1]

- (ii) how many years, to the nearest year, it takes for Alaric to have \$200. [1]
- (e) Beatrice invests \$100 at 7% per year simple interest.

an *x*-axis for $0 \le x \le 40$ and a *y*-axis for $0 \le y \le 500$.

(i)	Show that after 20 years Beatrice has \$240.	[2]
(ii)	How many dollars will Beatrice have after 40 years?	[1]
(iii)	On the same grid , draw a graph to show how the \$100 which Beatrice invests will including the 40 years.	ease [2]

(f) Alaric first has more than Beatrice after *n* years. Use your graphs to find the value of *n*.

[2]

5 (a) The table shows some values for the equation $y = \frac{x}{2} - \frac{2}{x}$ for $-4 \le x \le -0.5$ and $0.5 \le x \le 4$.

For Examiner's Use

(b) Use your graph to solve the equation $\frac{x}{2} - \frac{2}{x} = 1$. Answer(b) x = or x =[2] (c) (i) By drawing a tangent, work out the gradient of the graph where x = 2. Answer(c)(i) [3] (ii) Write down the gradient of the graph where x = -2. Answer(c)(ii) [1] (d) (i) On the grid, draw the line y = -x for $-4 \le x \le 4$. [1] (ii) Use your graphs to solve the equation $\frac{x}{2} - \frac{2}{x} = -x$. $Answer(d)(ii) x = \qquad \text{or } x =$ [2] (e) Write down the equation of a straight line which passes through the origin and does not intersect the graph of $y = \frac{x}{2} - \frac{2}{x}$.

Answer(e) [2]

For Examiner's Use

	$\mathbf{f}(x) = 2x - 1$	$g(x) = x^2 + 1 \qquad h(x)$	$=2^{x}$		For
(a)	Find the value of				Examiner's Use
	(i) $f(-\frac{1}{2})$,				
		Answer(a)(i)		[1]	
	(ii) $g(-5)$,				
		Answer(a)(ii)		[1]	
	(iii) h(-3).				
		Answer(a)(iii)		[1]	
(b)	Find the inverse function $f^{-1}(x)$.				
		Answer(b) $f^{-1}(x) =$		[2]	
(c)	g(x) = z. Find x in terms of z.				
		4		[2]	
		Answer(c) x =		[2]	
(d)	Find $gf(x)$, in its simplest form.				
		$Answer(d) \mathfrak{of}(x) =$		[2]	

8 (a) $f(x) = 2^x$

Complete the table.

x	-2	-1	0	1	2	3	4	
y = f(x)		0.5	1	2	4			
								[3]

(b) g(x) = x(4-x)

Complete the table.

x	-1	0	1	2	3	4
$y = \mathbf{g}(x)$		0	3		3	0

For Examiner's Use

[2]

For (c) There are three integer values of k for which the equation $x + \frac{1}{x} = k$ has no solutions. Examiner's Use Write down these three values of k. Answer(c) k = or k = or k =[2] (d) Write down the ranges of x for which the gradient of the graph of $y = x + \frac{1}{x}$ is positive. -----Answer(d) [2] (e) To solve the equation $x + \frac{1}{x} = 2x + 1$, a straight line can be drawn on the grid. (i) Draw this line on the grid for $-2.5 \le x \le 1.5$. [2] (ii) On the grid, show how you would find the solutions. [1] (iii) Show how the equation $x + \frac{1}{x} = 2x + 1$ can be rearranged into the form $x^2 + bx + c = 0$ and find the values of b and c. Answer(e)(iii) b =*c* = [3]

(a) The table gives values of $f(x) = \frac{24}{x^2} + x^2$ for $0.8 \le x \le 6$.

x	0.8	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
f(<i>x</i>)	38.1	25	12.9	10	10.1	11.7	l	m	п	26	31	36.7

Calculate, correct to 1 decimal place, the values of *l*, *m* and *n*.

(b) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 5 units on the y-axis, draw an x-axis for $0 \le x \le 6$ and a y-axis for $0 \le y \le 40$.

Draw the graph of y = f(x) for $0.8 \le x \le 6$. [6]

[3]

- (c) Draw the tangent to your graph at x = 1.5 and use it to calculate an estimate of the gradient of the curve at this point. [4]
- (d) (i) Draw a straight line joining the points (0, 20) and (6, 32). [1]
 - (ii) Write down the equation of this line in the form y = mx + c. [2]
 - (iii) Use your graph to write down the *x*-values of the points of intersection of this line and the curve y = f(x). [2]
 - (iv) Draw the tangent to the curve which has the same gradient as your line in **part d(i)**. [1]
 - (v) Write down the equation for the tangent in **part d**(iv). [2]

t	0	1	2	3	4	5	6	7
f(<i>t</i>)	0	25	37.5	43.8	46.9	48.4	49.2	49.6

(a)	Using a scale of 2 cm to represent 1 unit on the horizontal t-axis and 2 cm to represent 1	0 units
	on the y-axis, draw axes for $0 \le t \le 7$ and $0 \le y \le 60$.	
	Draw the graph of the curve $y = f(t)$ using the table of values above.	[5]

(b) $f(t) = 50(1 - 2^{-t}).$

	(i)	Calculate the value of $f(8)$ and the value of $f(9)$.	[2]
	(ii)	Estimate the value of $f(t)$ when t is large.	[1]
(c)	(i)	Draw the tangent to $y = f(t)$ at $t = 2$ and use it to calculate an estimate of the gradient of curve at this point.	the [3]
	(ii)	The function $f(t)$ represents the speed of a particle at time t . Write down what quantity the gradient gives.	[1]
(d)	(i)	On the same grid, draw $y = g(t)$ where $g(t) = 6t + 10$, for $0 \le t \le 7$.	[2]
	(ii)	Write down the range of values for <i>t</i> where $f(t) > g(t)$.	[2]
	(iii)	The function $g(t)$ represents the speed of a second particle at time <i>t</i> . State whether the first or second particle travels the greater distance for $0 \le t \le 7$. You must give a reason for your answer.	[2]

7 A sketch of the graph of the quadratic function $y = px^2 + qx + r$ is shown in the diagram.

The graph cuts the *x*-axis at *K* and *L*. The point *M* lies on the graph and on the line of symmetry.

(a) When p = 1, q = -2, r = -3, find

(i)	the <i>y</i> -coordinate of the point where $x = 4$,	[1]

(ii) the coordinates of K and L, [3]

[2]

- (iii) the coordinates of *M*.
- (b) Describe how the above sketch of the graph would change in each of the following cases.

	(i)	<i>p</i> is negative.	[1]
	(ii)	p = 1, q = r = 0.	[1]
(c)	And	other quadratic function is $y = ax^2 + bx + c$.	
	(i)	Its graph passes through the origin. Write down the value of <i>c</i> .	[1]
		The end of the end of the end of the end of $(2, 0) = (4, 0)$	

(ii) The graph also passes through the points (3, 0) and (4, 8).Find the values of *a* and *b*.[4]

$$f(x) = 1 - \frac{1}{x^2}, x \neq 0.$$

(a)

x	-3	-2	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	2	3	
f(x)	p	0.75	0	-3	-5.25	q	q	-5.25	-3	0	0.75	р	

[2]

Find the values of p and q.

(b)	(i)	Draw an <i>x</i> -axis for $-3 \le x \le 3$ using 2 cm to represent 1 unit and a <i>y</i> -axis for $-11 \le y \le 2$ using 1 cm to represent 1 unit.	[1]
	(ii)	Draw the graph of $y = f(x)$ for $-3 \le x \le -0.3$ and for $0.3 \le x \le 3$.	[5]
(c)	Wri	te down an integer k such that $f(x) = k$ has no solutions.	[1]
(d)	On	the same grid , draw the graph of $y = 2x - 5$ for $-3 \le x \le 3$.	[2]
(e)	(i)	Use your graphs to find solutions of the equation $1 - \frac{1}{x^2} = 2x - 5$.	[3]
	(ii)	Rearrange $1 - \frac{1}{x^2} = 2x - 5$ into the form $ax^3 + bx^2 + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	[2]
(f)	(i)	Draw a tangent to the graph of $y = f(x)$ which is parallel to the line $y = 2x - 5$.	[1]
	(ii)	Write down the equation of this tangent.	[2]

$$f(x) = 3x - \frac{1}{x^2} + 3, \ x \neq 0.$$

(a) The table shows some values of f(x).

x	-3	-2.5	-2	-1.5	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	1.5	2	2.5	3
f(<i>x</i>)	р	-4.7	-3.3	-1.9	-1	-2.5	-4.5	-9.0	-7.2	-2.1	0.5	q	7.1	8.8	10.3	r

Find the values of p, q and r.

- (b) Draw axes using a scale of 1 cm to represent 0.5 units for $-3 \le x \le 3$ and 1 cm to represent 2 units for $-10 \le y \le 12$.
- (c) On your grid, draw the graph of y = f(x) for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$. [5]
- (d) Use your graph to solve the equations

(i)
$$3x - \frac{1}{x^2} + 3 = 0,$$
 [1]

(ii)
$$3x - \frac{1}{x^2} + 7 = 0.$$
 [3]

- (e) g(x) = 3x + 3. On the same grid, draw the graph of y = g(x) for $-3 \le x \le 3$. [2]
- (i) Describe briefly what happens to the graphs of y = f(x) and y = g(x) for large positive or **(f)** negative values of *x*. [1]

(ii) Estimate the gradient of
$$y = f(x)$$
 when $x = 100$. [1]

[3]

[1]

The diagram shows a sketch of $y = x^2 + 1$ and y = 4 - x.

- (a) Write down the co-ordinates of
 - (i) the point C, [1]
 - (ii) the points of intersection of y = 4 x with each axis. [2]
- (b) Write down the gradient of the line y = 4 x. [1]
- (c) Write down the range of values of x for which the gradient of the graph of $y = x^2 + 1$ is negative. [1]
- (d) The two graphs intersect at *A* and *B*. Show that the *x* co-ordinates of *A* and *B* satisfy the equation $x^2 + x - 3 = 0$. [1]
- (e) Solve the equation $x^2 + x 3 = 0$, giving your answers correct to 2 decimal places. [4]
- (f) Find the co-ordinates of the mid-point of the straight line *AB*. [2]

The table shows some of the values of the function $f(x) = x^2 - \frac{1}{x}$, $x \neq 0$.

x	-3	-2	-1	-0.5	-0.2	0.2	0.5	1	2	3
у	9.3	4.5	2.0	2.3	р	-5.0	-1.8	q	3.5	r

- (a) Find the values of p, q and r, correct to 1 decimal place.
- (b) Using a scale of 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on the y-axis, draw an x-axis for $-3 \le x \le 3$ and a y-axis for $-6 \le y \le 10$.

Draw the graph of y = f(x) for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$. [6]

- (c) (i) By drawing a suitable straight line, find the three values of x where f(x) = -3x. [3]
 - (ii) $x^2 \frac{1}{x} = -3x$ can be written as $x^3 + ax^2 + b = 0$. Find the values of *a* and *b*. [2]
- (d) Draw a tangent to the graph of y = f(x) at the point where x = -2.

Use it to estimate the gradient of
$$y = f(x)$$
 when $x = -2$. [3]

[3]

- (a) Find the value of
 - (i) f(-2),

Answer(a)(i) [1] g(0).

A farmer makes a rectangular enclosure for his animals.

He uses a wall for one side and a total of 72 metres of fencing for the other three sides.

The enclosure has width *x* metres and area *A* square metres.

(a) Show that $A = 72x - 2x^2$.

Answer (a)

(b) Factorise completely $72x - 2x^2$.

Answer(b) [2]

(c) Complete the table for $A = 72x - 2x^2$.

x	0	5	10	15	20	25	30	35
A	0	310	520			550	360	

(d) Draw the graph of $A = 72x - 2x^2$ for $0 \le x \le 35$ on the grid opposite.

[2]

Exe

[3]

For

Use

Each animal must have at least 12 m² for grazing. **(f)**

Calculate the greatest number of animals that the farmer can keep in an enclosure which has an area of $500 \,\mathrm{m}^2$.

(9)	Find	$f(x) = 6 + x^2$	g(x) = 4x - 1	For Examin Use
<i>(a)</i>	(i)	g(3),		
	(ii)	f (-4).	<i>Answer(a)</i> (i) [1]	
(b)	Find	I the inverse function $g^{-1}(x)$.	Answer(a)(ii) [1]	
(c)	Find	l fg(<i>x</i>) in its simplest form.	Answer(b) $g^{-1}(x) =$ [2]	
(d)	Solv	we the equation $gg(x) = 3$.	Answer(c) fg(x) = [3]	

7 (a) Complete the table for the function $f(x) = \frac{2}{x} - x^2$.

) (01	inplete the	e table lo	r the func	(x) - (x)	$-\frac{x}{x}$	•						Examiner's Use
x	-3	-2	-1	-0.5	-0.2		0.2	0.5	1	2	3	
f(x)	-9.7	-5			-10.0		10.0	3.75	1		-8.3	

For

[3]

(b) On the grid draw the graph of y = f(x) for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$.

(c) Use your graph to (i) solve f(x) = 2, Answer(c)(i) x =[1] (ii) find a value for k so that f(x) = k has 3 solutions. Answer(c)(ii) k =[1] (d) Draw a suitable line on the grid and use your graphs to solve the equation $\frac{2}{x} - x^2 = 5x$. Answer(d) x = or x =[3] (e) Draw the tangent to the graph of y = f(x) at the point where x = -2. Use it to calculate an estimate of the gradient of y = f(x) when x = -2. Answer(e) [3]

Fo Exam

 U_{2}

7 (a) Complete the table for the function $f(x) = \frac{x^3}{10} + 1$.

x	-4	-3	-2	-1	0	1	2	3
f(x)		-1.7	0.2	0.9	1	1.1	1.8	

(b) On the grid, draw the graph of y = f(x) for $-4 \le x \le 3$.

(c) Complete the table for the function $g(x) = \frac{4}{x}, x \neq 0$.

x	-4	-3	-2	-1	1	2	3
g(<i>x</i>)	-1	-1.3				2	1.3
					-		[

For Examine Use

[2]

[4]

(d) On the grid, draw the graph of y = g(x) for $-4 \le x \le -1$ and $1 \le x \le 3$.

(e) (i) Use your graphs to solve the equation $\frac{x^3}{10} + 1 = \frac{4}{x}$.

$$Answer(e)(i) \ x = \qquad \qquad \text{or } x = \qquad \qquad [2]$$

(ii) The equation
$$\frac{x^3}{10} + 1 = \frac{4}{x}$$
 can be written as $x^4 + ax + b = 0$.

Find the values of *a* and *b*.

Answer(e)(ii) a =

b = [2]

[3]

For Examin Use