5072 CHEMISTRY (NEW PAPERS WITH SPA)

TOPIC 3: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT
 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 3: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

LEARNING OUTCOMES

a) Define relative atomic mass A_{t}
b) Define relative molecular mass M_{r} and calculate relative molecular mass (and relative formula mass) as the sum of relative atomic masses
c) Calculate the percentage mass of an element in a compound when given appropriate information
d) Calculate empirical and molecular formulae from relevant data
e) Calculate stoichiometric reacting masses and volumes of gases (one mole of gas occupies $24 \mathrm{dm}^{3}$ at room temperature and pressure); calculations involving the idea of limiting reactants may be set (questions on the gas laws and the calculations of gaseous volumes at different temperatures and pressures will not be set)
f) Apply the concept of solution concentration (in $\mathrm{mol} / \mathrm{dm}^{3}$ or $\mathrm{g} / \mathrm{dm}^{3}$) to process the results of volumetric experiments and to solve simple problems (appropriate guidance will be provided where unfamiliar reactions are involved)
g) Calculate \% yield and \% purity

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

CONCEPT	SUB-CONCEPT	EXAMPLE			
Relative Atomic Mass/ Relative Molecular Mass/ Percentage Mass/ Molar Mass	The relative atomic mass/relative molecular mass of an element is the average mass of one atom of the element/ substance compared with $\frac{1}{12}$ of a carbon-12 atom.	Anhydrous Copper (II) Sulphate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ - It has $1{ }_{29}^{64} \mathrm{~S}$ atom, $1{ }_{16}^{32} \mathrm{Cu}$ atom, $4{ }_{8}^{16} \mathrm{O}$ atoms AND $5 \mathrm{H}_{2} \mathrm{O}$ atoms. - $\mathrm{H}_{2} \mathrm{O}$ consists of: $2{ }_{1}^{1} \mathrm{H}$ atoms and $1{ }_{8}^{16} \mathrm{O}$ atom. - $\mathrm{H}_{2} \mathrm{O}$ hence has a M_{r} of $2(1)+16=18$ - It has a M_{r} of $64+32+4(16)+5(18)=250$ - The \% of Cu in it is $\frac{64}{255} \times 100 \%=25.6 \%$ - The $\%$ of $\mathrm{H}_{2} \mathrm{O}$ in it is $\frac{5 \times 18}{250} \times 100 \%=36 \%$			
	The mass in grams of 1 mole of substance is called its molar mass. - 1 mole of substance has 6.23×10^{23} particles. - The mass of 1 mole of substance is equal to its molecular formula - To convert the number of moles to mass, one must multiply the number of moles by the M_{r} of the substance.	$\begin{gathered} 3.44 \text { moles of } \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\ -\quad 3.44 \times 250=860 \mathrm{~g} \end{gathered}$			
Empirical/ Molecular Formula	The Empirical Formula shows the simplest number ratio of the different types of atoms in a compound. The Molecular Formula shows the actual number and kinds of atoms present in a compound, an integral multiple of the empirical formula.	An anaesthetic compound is found to contain elements carbon, hydrogen and chlorine. The percentages of by mass of these elements are C : 10.04%, H: 0.84%, CI: 89.12%. One mole of this compound has a mass of 120 g . Calculate its molecular formula.			
			C	H	Cl
		Percentage by Mass	10.04\%	0.84\%	89.12\%
		Relative Atomic Mass, A_{r}	12	1	35.5
		Number of moles	$\begin{aligned} & \frac{10.04}{12}= \\ & 0.84 \end{aligned}$	$\begin{aligned} & \frac{0.84}{1}= \\ & 0.84 \end{aligned}$	$\begin{aligned} & \frac{89.12}{35.5}= \\ & 2.51 \end{aligned}$
		Divide by smallest Number (0.84)	1	1	3

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

Reagents/ Reactants	completely used up during the process. However, all others may and may not be totally used up.	of oxygen is ignited in a sealed container at $100^{\circ} \mathrm{C}$. What was the total number of moles of gases at the end of the reaction? Number of Moles of Ethene and Oxygen $1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}$ and 4 mol of O_{2} Balanced Chemical Equation $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})$ Mole Ratio of substances 1 mole of $\mathrm{C}_{2} \mathrm{H}_{4}$ and 3 moles of O_{2} yields 2 moles of CO_{2} and 2 moles of $\mathrm{H}_{2} \mathrm{O}$ (i.e. 4 moles of gases) Calculation of number of moles of substance to be found Since we have only 1 mole of $\mathrm{C}_{2} \mathrm{H}_{4}$ but 4 moles of O_{2}, we can only produce 2 moles of CO_{2} and 2 moles of $\mathrm{H}_{2} \mathrm{O}$. In addition, we would have 1 mole of O_{2} left unreacted. Therefore, a total of 5 moles of gases is left at the end. Hence, the limiting reagent is $\mathrm{C}_{2} \mathrm{H}_{4}$ while O_{2} is in excess.
Concentration/ Molarity of a Solution	- The concentration of a solution indicates the amount of solute present in $1 \mathrm{dm}^{3}$ of the solution. Concentration of a solution $=\frac{\text { Mass of solute in grams }}{\text { Volume of solution in } \mathrm{dm}^{3}}$ In Chemistry, the concentration of a solution is expressed in molarity (symbol M), where M is in $\mathrm{mol} / \mathrm{dm}^{3}$ $>$ Molarity of a solution $=\frac{\text { Amount of Solute in moles }}{\text { Volume of solution in } \mathrm{dm}^{3}}$ $>$ A molar solution contains 1 mole of solute in $1 \mathrm{dm}^{3}$ of solution ($1 \mathrm{~mol} / \mathrm{dm}^{3}$) - To convert between the two different types of concentrations, one may apply the formula:	A $20 \mathrm{~cm}^{3}$ solution contains 5.0 g of HCl . Calculate the molarity of the solution. - M_{r} of $\mathrm{HCl}=1+35.5=36.5$ - No of moles of $\mathrm{HCl}=\frac{5.0}{36.5}=0.137$ - In $20 \mathrm{~cm}^{3}$, there are 0.137 moles of HCl - Concentration in $\mathrm{mol} / \mathrm{dm}^{3}=\frac{0.137 \mathrm{~mol}}{20 \mathrm{~cm}^{3}}=$ $6.85 \mathrm{~mol} / \mathrm{dm}^{3}$

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

	$\text { Molarity of a solution }=\frac{\text { Concentration of solution }}{M_{r} \text { of solution }}$	
Percentage Yield	- The quantity of product formed when all the limiting reagents react is called the Theoretical Yield. This may be calculated from the Chemical equation. - The amount of product actually obtained through experimentation is called the Actual Yield. $\text { - } \quad \text { Percentage Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%$	$50 \mathrm{~cm}^{3}$ of $0.105 \mathrm{~mol} / \mathrm{dm}^{3}$ of $\mathrm{CaCl}_{2}(\mathrm{aq})$ was treated with an excess of $\mathrm{AgNO}_{3}(\mathrm{aq})$. White AgCl was formed and the precipitate weighed after drying. A mass of 1.45 g was recorded. What was the Percentage Yield? - Number of Moles Of CaCl_{2} $\frac{50}{1000} \times 0.105=0.00525 \mathrm{~mol}$ - Balanced Chemical Equation $\mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{s})+$ $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ Mole Ratio of substances 1 mol of CaCl_{2} yields 2 moles of AgCl Calculation of number of moles of substance to be formed If 1 mol of CaCl_{2} yields 2 moles of AgCl , Then 0.00525 mol of CaCl_{2} yields 0.0105 mol of AgCl - Theoretical Yield/ Mass of $\mathbf{A g C l}$ $0.0105 \times M_{r} \text { of } \mathrm{AgCl}=0.0105 \times(108+$ $35.5)=1.507 \mathrm{~g}$ Percentage Yield $\frac{1.45}{1.507} \times 100 \%=96.2 \%$
Percentage Purity	- Percentage Purity indicates the amount of pure substances present in a sample of chemical substance. $\text { - Percentage Purity }=\frac{\text { Mass of Pure Substance in Sample }}{\text { Mass of Sample }} \times 100 \%$	4.35 g of MnO_{2} was added to $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ of HCl . $48 \mathrm{~cm}^{3}$ of the acid was needed to react with MnO_{2} in the given sample. Calculate the percentage purity of MnO_{2}. - Number of Moles Of HCI $\frac{48}{1000} \times 1.0=0.048 \mathrm{~mol}$ - Balanced Chemical Equation $\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC THREE: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

