5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 3: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 3: FORMULAE, STOICHIOMETRY AND THE MOLE CONCEPT

LEAR	LEARNING OUTCOMES		
a)	Define relative atomic mass A _r		
b)	Define relative molecular mass M_r and calculate relative molecular mass (and relative formula mass) as the sum of relative atomic masses		
c)	Calculate the percentage mass of an element in a compound when given appropriate information		
d)	Calculate empirical and molecular formulae from relevant data		
e)	Calculate stoichiometric reacting masses and volumes of gases (one mole of gas occupies 24 dm ³ at room temperature and pressure); calculations involving the idea of limiting reactants may be set (questions on the gas laws and the calculations of gaseous volumes at different temperatures and pressures will not be set)		
f)	Apply the concept of solution concentration (in mol/dm ³ or g/dm ³) to process the results of volumetric experiments and to solve simple problems (appropriate guidance will be provided where unfamiliar reactions are involved)		
g)	Calculate % yield and % purity		

CONCEPT	SUB-CONCEPT	EXAMPLE
Relative Atomic Mass/ Relative Molecular Mass/ Percentage Mass/ Molar Mass	 The relative atomic mass/ relative molecular mass of an element is the average mass of one atom of the element/ substance compared with ¹/₁₂ of a carbon-12 atom. 	Anhydrous Copper (II) Sulphate, $CuSO_4 \cdot 5H_2O$ - It has 1 ${}^{64}_{29}S$ atom, 1 ${}^{32}_{16}Cu$ atom, 4 ${}^{16}_{8}O$ atoms AND 5 H ₂ O atoms. - H ₂ O consists of: 2 ${}^{1}_{1}H$ atoms and 1 ${}^{16}_{8}O$ atom. - H ₂ O hence has a M_r of 2(1) + 16 = 18 - It has a M_r of 64 + 32 + 4(16) + 5(18) = 250 - The % of Cu in it is ${}^{64}_{250}$ x 100% = 25.6% - The % of H ₂ O in it is ${}^{5 \times 18}_{250}$ x 100% = 36%
Empirical/	 The mass in grams of 1 mole of substance is called its molar mass. 1 mole of substance has 6.23 x 10²³ particles. The mass of 1 mole of substance is equal to its molecular formula To convert the number of moles to mass, one must multiply the number of moles by the <i>M_r</i> of the substance. The Empirical Formula shows the simplest number ratio of the 	 3.44 moles of CuSO₄·5H₂O - 3.44 x 250 = 860g An anaesthetic compound is found to contain
Molecular Formula	 different types of atoms in a compound. The Molecular Formula shows the actual number and kinds of atoms present in a compound, an integral multiple of the empirical formula. 	elements carbon, hydrogen and chlorine. The percentages of by mass of these elements are C: 10.04%, H: 0.84%, CI: 89.12%. One mole of this compound has a mass of 120g. Calculate its molecular formula.
		Mass 12 1 35.5 Relative Atomic 12 1 35.5 Mass, A_r 1 12 1 Number of moles $\frac{10.04}{12} =$ $\frac{0.84}{1} =$ $\frac{89.12}{35.5} =$ 0.84 0.84 2.51 Divide by smallest 1 1 3

		Simplest Ratio 1 1 3
		Empirical Formula: CHCl ₃
		n (Emprical = Molecular
		n (M of - 120)
		n (119.5) = 120
		n = 120/119.5
		n ≈ 1
N		∴ Molecular Formula: CHCl ₃
Masses/ Volumes of	- The masses of gases are counted in the same way as it is counted for solids and liquids: that is to multiply the number of	
Gases	moles by the M of the substance	
•	- At room temperature of 25°C and 1 atmosphere, one mole of	
	gas has a volume of 24dm ³ .	
	The volume of the gas is directly proportional to the number	
	of moles.	
Calculations	Calculations from chemical equations involve five main steps, although	Calculate the volume of Carbon Dioxide gas
Fountions	Steps	of propage
Equations	- Work out the number of moles of the known substance	- Number of Moles of Propane
	- Construct or write down the balanced chemical equation	2 moles
	- List down the mole ratios of the substances to be found from the	- Balanced Chemical Equation
	equations	$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$
	- Calculate the number of moles of the substance to be found	- Mole Ratio of substances
	- Work out the mass of volume of concentration of substance to	- Calculation of number of moles of
		substance to be found
		If 1 mole of C_3H_8 yields 3 moles of CO_2 ,
		Then 2 moles of C_3H_8 yields 6 moles of
		- Volume of CO_2 produced
Limiting	- Limiting Reactants or Reagents is the chemical that is	A mixture containing 1 mole of ethene and 4 moles

Reagents/ Reactants	completely used up during the process. However, all others may and may not be totally used up.	 of oxygen is ignited in a sealed container at 100°C. What was the total number of moles of gases at the end of the reaction? Number of Moles of Ethene and Oxygen 1 mol C₂H₄ and 4 mol of O₂ Balanced Chemical Equation C₂H₄ (g) + 3O₂ (g) → 2CO₂ (g) + 2H₂O (g) Mole Ratio of substances mole of C₂H₄ and 3 moles of O₂ yields 2 moles of CO₂ and 2 moles of H₂O (i.e. 4 moles of gases)
		 Calculation of number of moles of substance to be found Since we have only 1 mole of C₂H₄ but 4 moles of O₂, we can only produce 2 moles of CO₂ and 2 moles of H₂O. In addition, we would have 1 mole of O₂ left unreacted. Therefore, a total of 5 moles of gases is left at the end. Hence, the limiting reagent is C₂H₄ while O₂ is in excess.
Concentration/ Molarity of a Solution	 The concentration of a solution indicates the amount of solute present in 1dm³ of the solution. Concentration of a solution = Mass of solute in grams Volume of solution in dm³ In Chemistry, the concentration of a solution is expressed in molarity (symbol M), where M is in mol/dm³ Molarity of a solution = Amount of Solute in moles Volume of solution in dm³ Molarity of a solution = Amount of Solute in moles volume of solution in dm³ A molar solution contains 1 mole of solute in 1dm³ of solution (1mol/dm³) To convert between the two different types of concentrations, one may apply the formula: 	A 20cm ³ solution contains 5.0g of HCI. Calculate the molarity of the solution. - M_r of HCI = 1 + 35.5 = 36.5 - No of moles of HCI = $\frac{5.0}{36.5}$ = 0.137 - In 20cm ³ , there are 0.137 moles of HCI - Concentration in mol/dm ³ = $\frac{0.137 \text{ mol}}{20 \text{ cm}^3}$ = 6.85mol/dm ³

		1
	Molarity of a solution = $\frac{Concentration of solution}{M_{e} of solution}$	
Percentage Yield	 The quantity of product formed when all the limiting reagents react is called the Theoretical Yield. This may be calculated from the Chemical equation. The amount of product actually obtained through experimentation is called the Actual Yield. Percentage Yield = Actual Yield / Theoretical Yield x 100% 	50cm ³ of 0.105 mol/dm ³ of CaCl ₂ (aq) was treated with an excess of AgNO ₃ (aq). White AgCl was formed and the precipitate weighed after drying. A mass of 1.45g was recorded. What was the Percentage Yield? - Number of Moles Of CaCl ₂ $\frac{50}{1000}$ x 0.105 = 0.00525 mol - Balanced Chemical Equation CaCl ₂ (aq) + 2AgNO ₃ (aq) → 2AgCl (s) + Ca(NO ₃) ₂ (aq) - Mole Ratio of substances 1 mol of CaCl ₂ yields 2 moles of AgCl - Calculation of number of moles of substance to be formed If 1 mol of CaCl ₂ yields 2 moles of AgCl, Then 0.00525 mol of CaCl ₂ yields 0.0105 mol of AgCl - Theoretical Yield/ Mass of AgCl 0.0105 x M _r of AgCl = 0.0105 x (108 + 35.5) = 1.507g - Percentage Yield 1.45 1.507
Percentage Purity	 Percentage Purity indicates the amount of pure substances present in a sample of chemical substance. Percentage Purity = Mass of Pure Substance in Sample X 100% Mass of Sample 	4.35g of MnO ₂ was added to 1.0mol/dm ³ of HCl. 48cm ³ of the acid was needed to react with MnO ₂ in the given sample. Calculate the percentage purity of MnO ₂ . - Number of Moles Of HCl $\frac{48}{1000}$ x 1.0 = 0.048 mol - Balanced Chemical Equation MnO ₂ (s) + 4HCl (aq) → MnCl ₂ (aq) + 2H ₂ O

$(l) + Cl_2 (g)$
- Mole Ratio of substances
1 mole of MnO ₂ requires 4 moles of HCl to
react.
- Calculation of number of moles of pure
MnO ₂
0.048 mol of HCl used,
Hence $\frac{0.048}{10} = 0.012$ moles of MnO ₂ present
- Mass of Pure MnO ₂
$0.012 \times M_r$ of MnO ₂ = $0.012 \times 87 = 1.044$ g
- Percentage Purity of MnO ₂
$1.044 \times 100\% - 24\%$
$\frac{1}{4.35}$ x 100% = 24%