4038 ADDITIONAL MATHEMATICS TOPIC 2: GEOMETRY AND TRIGONOMETRY

SUB-TOPIC 2.2 COORDINATE GEOMETRY IN TWO DIMENSIONS

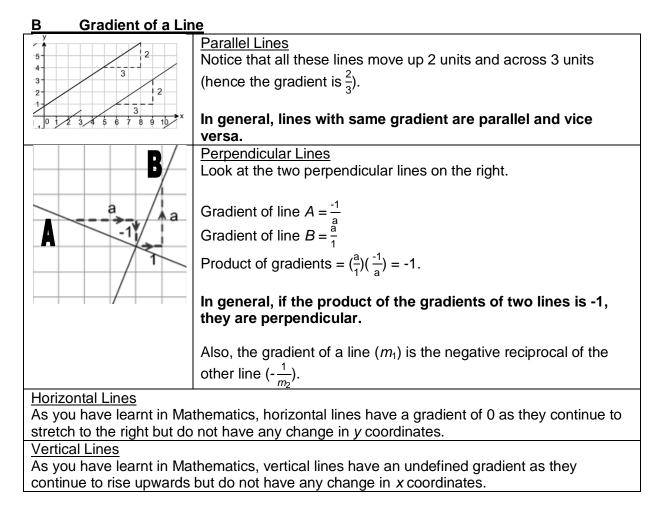
CONTENT OUTLINE

- 1. Condition for two lines to be parallel or perpendicular
- 2. Mid-point of line segment
- 3. Finding the area of rectilinear figure given its vertices
- 4. Graphs of equations
 - a. $y = ax^n$, where *n* is a simple rational number b. $y^2 = kx$
- 5. Coordinate geometry of the circle with the equation $(x-a)^2 + (y-b)^2 = r^2$ and $x^2 + y^2 + 2gx + 2fy + c = 0$
- 6. Transformation of given relationships, including $y = ax^n$ and $y = kb^x$, to linear form to determine the unknown constants from the straight line graph

Exclude:

- 1. Finding the equation of the circle passing through three given points.
- 2. Intersection of two circles

A Introduction


In Mathematics, we have learnt the above few. Let us revise:

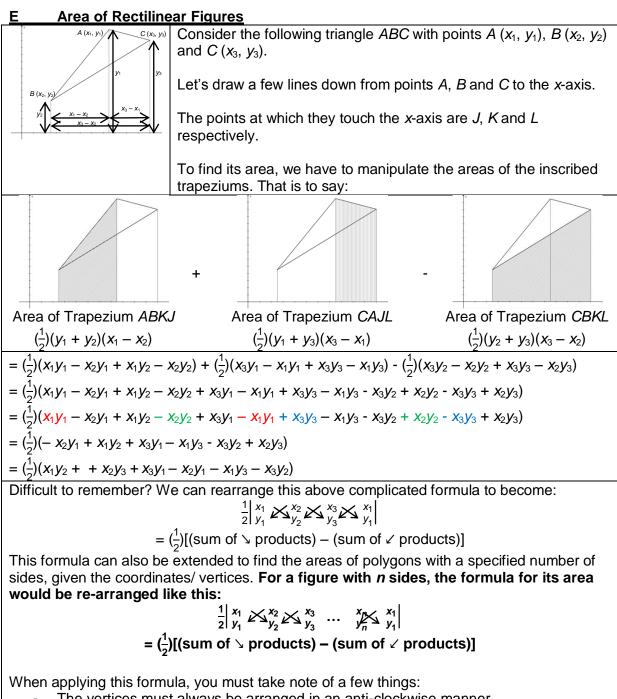
- The Length of AB, where A (x_1, y_1) and B (x_2, y_2) , has a length of

 $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

- The gradient of a line refers to the vertical change as we move 1 unit across the x axis. Hence, Gradient of line $L = \frac{\text{Change in } y \text{ coordinates}}{\text{Change in } x \text{ coordinates}} = \frac{y_1 \cdot y_2}{x_1 \cdot x_2}$ Whereby (x_1, y_1) and (x_2, y_2) are two points on the same line L.
- The general equation of a line segment is y = mx + c, whereby *m* is the gradient of the line and *c* is the *y*-intercept of the line.

For Additional Mathematics, you will require the knowledge of these above topics and more.

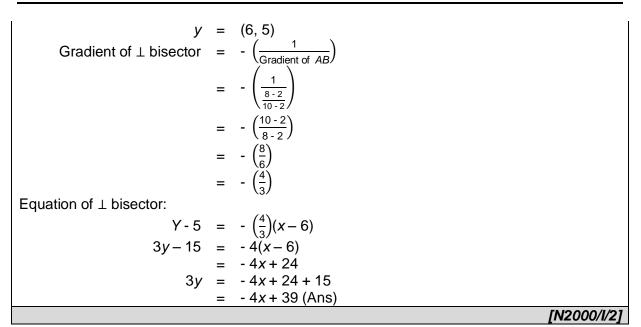
<u>C</u> Equation of a Straight Line If three points are on the same line, they are collinear. Collinear points can be identified by the fact that the gradients of any two points on the line are equal.

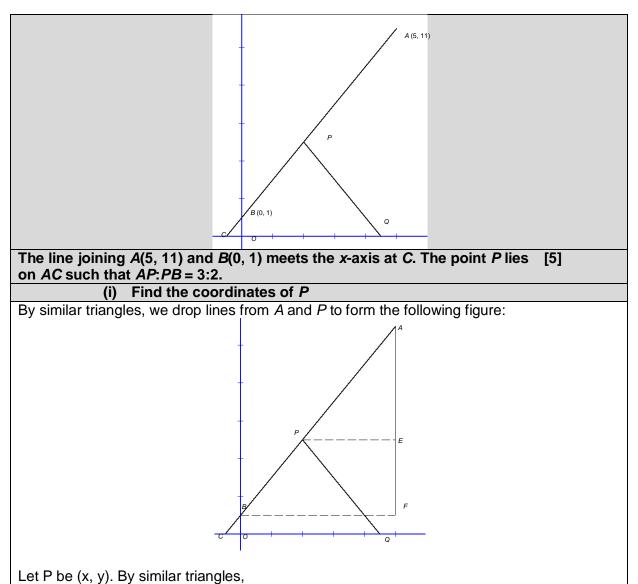

Consider the collinear points $A(x_1, y_1)$, $B(x_2, y_2)$ and C(x, y).

Knowing that the gradients are equal, we gather that:

no ming that the gradiente are equal, no gather that				
Gradient of AB	=	Gradient of AC		
<i>y</i> ₂ - <i>y</i> ₁	_	$y - y_1$		
x ₂ - x ₁	=	<i>x</i> - <i>x</i> ₁		
<i>y</i> – <i>y</i> ₁	=	$\left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1)$		

We thus gather that the equation of a straight line is $y - y_1 = m(x - x_1)$, where m is the gradient $\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$ of the line and (x_1, y_1) are the coordinates of any given point on the line.


D Midpoint of a L	ine Segment	
У В (x ₂ , y ₂)	Let us find the coordinates of midpoint <i>M</i> of the line joining $A(x_1, y_1)$ and $B(x_2, y_2)$.	
M y ₂ - y ₁ y ₂ - y ₁	From A to B, we move $x_2 - x_1$ units across and $y_2 - y_1$ units up.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hence, to reach <i>M</i> from <i>A</i> , we move $\frac{x_2 - x_1}{2}$ units across and $\frac{y_2 - y_1}{2}$ units up.	
	We hence derive that the coordinates of <i>M</i> are $(x_1 + \frac{x_2 - x_1}{2}, y_1 + \frac{y_2 - y_1}{2})$ units, which is also equal to $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.	
In general, the midpoint of a line connecting points (x_1, y_1) and (x_2, y_2) is: $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.		



- The vertices must always be arranged in an anti-clockwise manner.
- Any point can be used as the starting, and you must remember to place the point at the end as well.

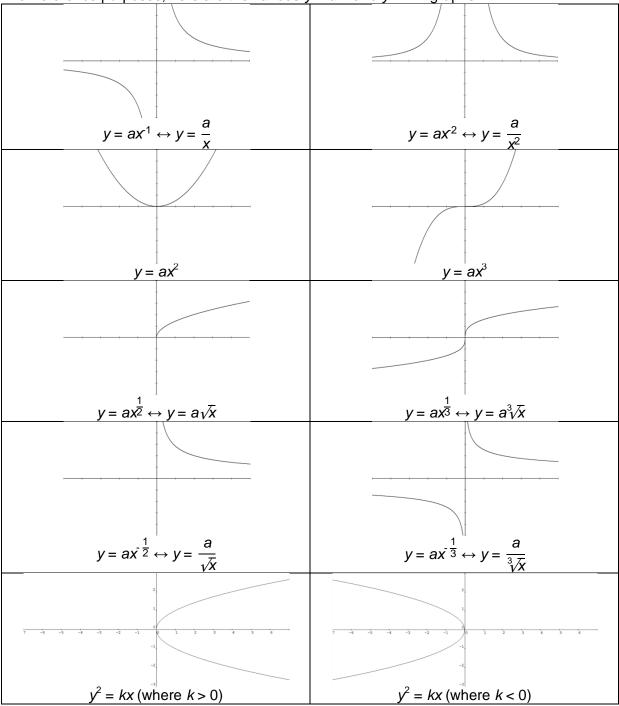
Worked Examples on Sections B, C, D, E F A line is drawn through the point A(4, 6) parallel to the line 2y = x - 2, meets the *y*-axis at the point *B*. [6] A line drawn through A(4, 6) perpendicular to AB, meets the line 2y = x - 2 at the point C. (i) Calculate the coordinates of B. When the line meets the y-axis, x = 0. Hence, let $B = (0, B_y)$ *x* - 2 2y= $\frac{x}{2} - 1$ = y $\frac{1}{2}x - 1$ У = Since AB parallel to 2y = x - 2, then gradient of $AB = \frac{1}{2}$, and equation of AB: $y - 6 = \frac{1}{2}(x - 4)$ $\frac{1}{2}x - 2$ = $Y = \frac{1}{2}x - 2 + 6$ $\frac{1}{2}x + 4$ Y = $\frac{1}{2}(0) + 4$ Sub in *B*: B_v = 4 Hence, B = (0, 4)(ii) Calculate the coordinates of C. 1 2 Gradient of AB = Since AC is perpendicular to AB, the gradient of AC is negative reciprocal of $\frac{1}{2}$, i.e. $-\frac{1}{\frac{1}{2}}$ Gradient of AC = - 2 Hence equation of AC: -2(x-4)*y* – 6 = = -2x + 8= -2x + 8 + 6y -2x+14 --- (1) = 2y = x - 2 - (2)Since both lines intersect, sub (1) into (2): 2(-2x+14) = x-2-4x + 28 = x - 228 + 2 = x + 4x30 = 5x= Χ 6 (Ans) Sub x = 6 into (1): = -2(6) + 14V = -12 + 14 2 = Hence, C = (6, 2)[N97/I/2]

The points <i>A</i> and <i>B</i> have coor the equation of the perpendicu	[4]	
Midpoint of AB =	$\left(\frac{2+10}{2}, \frac{2+8}{2}\right)$	
<i>y</i> =	$\left(\frac{12}{2}, \frac{10}{2}\right)$	

$\frac{5 \cdot x}{5} =$ $5 \cdot x =$ $x =$	$ \frac{AP}{AP + PB} $ $ \frac{3}{5} $ $ 3 $
By similar triangles,	AP
$\frac{AE}{AF} =$	AB
$\frac{11-y}{11-1}$ =	
11-1	5
$\frac{11 - y}{10} =$	<u>3</u> 5
10 11 - v	6
$\frac{11 - y}{10} = 11 - y =$	10
11 - y =	6
y =	5
Hence, $P = (2, 5)$	
	at Q and angle PCQ = angle PQC. Find:
(ii) The equation of F	
Since angle PCQ = angle PQC , ther Gradient of PQ =	
=	$-\left(\frac{11-1}{5-0}\right)$ -
_	$-\left(\frac{10}{5}\right)$
	-2
Hence, equation of PQ:	2(x-2)
	-2(x-2) -2x+4
	-2x + 4 -2x + 9 (Ans)
(ii) The coordinates of	-2X + 9 (Alls)
	hus, let $Q = (Q_x = 0)$ and sub into equation of PQ:
	$-2(Q_x) + 9$
	$-2(Q_x)$
$2Q_x =$	
$Q_x =$	4.5
Hence, Q = (4.5, 0)	
	[N2001/I/3]

The diagram, which is not drawn to scale, shows a parallelogram OABC where O is the origin and A is the point (2, 6). The equations of OA, OC and CB are $y = 3x$, $y = \frac{1}{2x}$			
and $y = 3x - 15$ respectively. Find	The perp	pendicular from A to OC meets OC at the point D.	
(i) The coordina	tes of C,	<i>B</i> and <i>D</i> . [8]	
To find coordinates of C, equat	$e y = \frac{1}{2}x$		
1⁄2X	=	3 <i>x</i> – 15	
15	=	$3x - \frac{1}{2}x$	
	=	2.5 <i>x</i>	
X	=	6 (Ans)	
Sub $x = 6$ into $y = \frac{1}{2}x$.		17 (6)	
У	=	$\frac{1}{2}$ (6) 3 (Ans) Hence, C = (6, 3)	
	=	3 (AIIS) Hence, C = (0, 3)	
Since AB is parallel to $v = \frac{1}{2}x$ t	then arad	lient of <i>AB</i> is also ½. Equation of <i>AB</i> :	
y = 6	=	$\frac{1}{2}(x-2)$	
, , ,	=	$\frac{1}{2}x - 1$	
У	=	$\frac{1}{2}x - 1 + 6$	
У	=	½x + 5 (Ans)	
Since <i>B</i> is intersection point of	Since B is intersection point of $y = \frac{1}{2}x + 5$ and $y = 3x - 15$, equate both to get B:		
$\frac{1}{2}x + 5 = 3x - 15$			
<i>x</i> + 10	=	6 <i>x</i> – 30	
10 + 30	=	6x - x	
40	=	5 <i>x</i>	
Sub $x = 8$ into $y = \frac{1}{2}x + 5$:	=	8 (Ans)	
-	_	1/2(8) + 5	
У	=	9 (Ans) Hence $B = (8, 9)$	
	= 3(A(3)) + b(0, 3)		
Gradient of AD	=	$-\left(\frac{1}{\text{Gradient of }OC}\right)$	
	=	$-\left(\frac{1}{\frac{1}{2}}\right)$	
Equation of <i>AD</i> :	=	- 2	

y - 6	=	-2(x-2) -2x+4		
y - 6	=	-2x + 4		
y y	=	-2 <i>x</i> + 4 + 6		
y y	=	-2 <i>x</i> + 10		
To find coordinates of D, equ	hate $y = -2x$	+ 10 and $y = \frac{1}{2}x$:		
1/2X		-2 <i>x</i> + 10		
x		-4 <i>x</i> + 20		
x + 4x	=	20		
5 <i>x</i>	=	20		
x	=	4 (Ans)		
Sub $x = 4$ into $y = \frac{1}{2}x$:				
У	=	1⁄2(4)		
	=	2 (Ans) Hence <i>D</i> = (4, 2)		
(ii) The perimeter	of the paral	lelogram OABC, correct [3]		
to 1 decimal pla	ace			
Length of OA	=	$ \sqrt{(2-0)^2 + (6-0)^2} \sqrt{(2)^2 + (6)^2} $		
	=	$\sqrt{(2)^2 + (6)^2}$		
	=	$\sqrt{4+36}$		
	=	$\sqrt{40}$		
Length of OC	=	$\sqrt{(6-0)^2+(3-0)^2}$		
	=	$\sqrt{(6)^2 + (3)^2}$		
	=	$\sqrt{36+9}$		
	=	$\sqrt{45}$		
Perimeter of OABC	=	2(Length of OA + Length of OC)		
	=	$2(\sqrt{40} + \sqrt{45})$		
	=	26.06552 units ²		
	=	26.1 units ² (Ans)		
			[N2003/I/11]	


A parallelogram ABCD passes through vertices A(-3, 1), B(4, 9) and C(11, -3). Find:				
(a) The midpoint of the diagonal AC				
Midpoint of AC	=	$\left(\frac{-3+11}{2}, \frac{1+(-3)}{2}\right)$		
	=	$\left(\frac{8}{2}, \frac{-2}{2}\right)$		
	=	(4, -1) (Ans)		
(b) The fou	(b) The fourth vertex D			
		nidpoint of its diagonals would bisect each other (i.e.		
they would both be the sam	ie). Hence	e, let <i>D</i> be (<i>h</i> , <i>k</i>).		
Midpoint of AC	=	Midpoint of <i>BD</i>		
(4, -1)	=	$\left(\frac{4+h}{2}, \frac{9+k}{2}\right)$		
Focusing on x coordinate		Focusing on <i>y</i> coordinate only:		
4 = 8 =	$\frac{4+h}{2}$	$ \begin{array}{rcl} -1 & = & \frac{9+k}{2} \\ -2 & = & 9+k \\ k & = & 9+2 \end{array} $		
8 =	4 + h	-2 = 9 + k		
h =	8 – 4	k = 9+2		
=	4	= 11		
Hence, <i>D</i> = (4, 11) (Ans)				

<u>G</u> Graphs of Equations $y = ax^n$ and $y^2 = kx$ For such questions, you would only be required to:

- Draw the graphs given the values -
- Find the solution set to a particular equation by adding a suitable straight line
- -Find the corresponding x or y coordinate, given one.

As such, refer to your notes from Mathematics on Functions and Graphs for how to answer these questions.

For reference purposes, here are the various $y = ax^n$ and $y^2 = kx$ graphs.

H Equation of a Circle

We know that the length of a line is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. We now have a circle with a radius *CF* of length *r*, where *C* (*a*, *b*) is the centre of the circle and *F* (*x*, *y*) is a point on the circumference of the circle.

$$\sqrt{(x-a)^2 + (y-b)^2} = r$$

Taking square on both sides, $(x-a)^2 + (y-b)^2 = r^2$

We thus get the equation that a circle of centre C (a, b) would have an equation of $(x - a)^2 + (y - b)^2 = r^2$ where r is the radius.

Now consider a circle with the equation: $x^2 + y^2 + 2gx + 2fy + c = 0$. How can we determine the centre and the radius? Let us try manipulating the equation.

$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$

$$x^{2} + 2gx + y^{2} + 2fy = -c$$

$$x^{2} + 2(g)(x) + y^{2} + 2(f)(y) = -c$$

Complete the square: $x^{2} + 2(g)(x) + g^{2} - g^{2} + y^{2} + 2(f)(y) + f^{2} - f^{2} = -c$

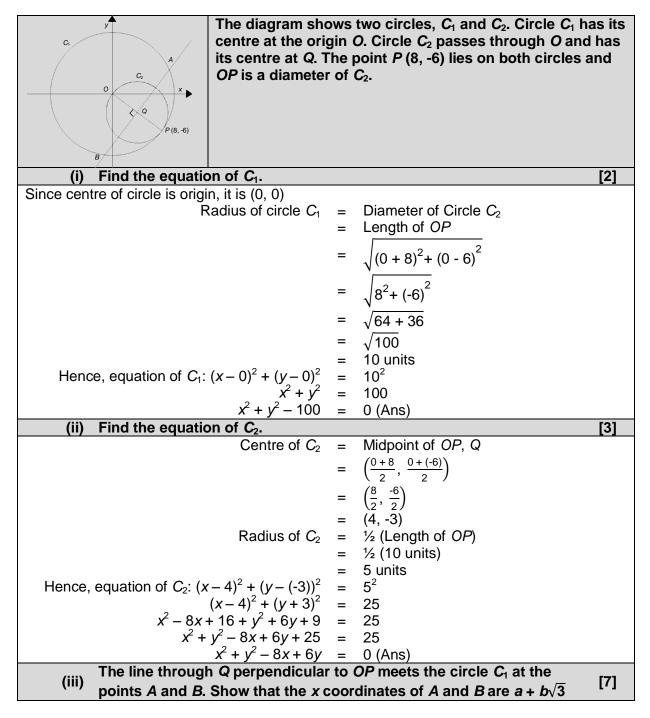
$$(x + g)^{2} - g^{2} + (y + f)^{2} - f^{2} = -c$$

$$(x + g)^{2} + (y + f)^{2} = -c + g^{2} + f^{2}$$

$$(x + g)^{2} + (y + f)^{2} = (\sqrt{-c + g^{2} + f^{2}})^{2}$$

We thus gather that the centre of the circle is (-g, -f) and the radius is $\sqrt{g^2 + f^2} - c$.

In summary,


FORM 1	Property	FORM 2
(a, b)	Centre of a Circle, C	(- <i>g</i> , - <i>f</i>)
r	Radius of a Circle, <i>r</i>	$\sqrt{g^2+f^2-c}$
$(x-a)^2 + (y-b)^2 = t^2$	Equation of a Circle	$x^{2} + y^{2} + 2gx + 2fy + c = 0$

WORKED EXAMPLES			
The equation of a circle, C, is $x^2 + y^2 - 6x - 8y + 16 = 0$			
(i) Find the coordinates of the centre of <i>C</i> and find the radius of <i>C</i> .	[3]		
$x^{2} + y^{2} - 6x - 8y + 16 =$			
$x^2 - 6x + y^2 - 8y = -16$			
$ \begin{array}{rcl} x^2 - 2(3)(x) + y^2 - (2)(4)(y) &=& -16 \\ x^2 - 2(3)(x) + 3^2 - 3^2 + y^2 - (2)(4)(y) + 4^2 - 4^2 &=& -16 \\ & & (x-3)^2 - 3^2 + (y-4)^2 - 4^2 &=& -16 \end{array} $			
$x^{2} - 2(3)(x) + 3^{2} - 3^{2} + y^{2} - (2)(4)(y) + 4^{2} - 4^{2} = -16$			
$(x-3)^2 - 3^2 + (y-4)^2 - 4^2 = -16$			
$(x-3)^2 - 9 + (y-4)^2 - 16 = -16$			
$(x-3)^2 + (y-4)^2 - 25 = -16$			
$(x-3)^2 + (y-4)^2 = -16 + 25$			
= 9			
$= 3^2$			
Hence, coordinates of centre of C is (3, 4) and radius of C is 3 units.			
(ii) Show that C touches the <i>y</i> -axis	[2]		
When C touches y-axis, $x = 0$. Hence, sub $x = 0$ into equation.			
$(0-3)^2 + (y-4)^2 = 9$			
$9 + (y - 4)^2 = 9$			
$(y-4)^2 = 0$			
y - 4 = 0			
y = 4			

Therefore, as there is a corresponding *y* coordinate for the value of x = 0, *C* does touch the *y*-axis.

(iii) Find the equation of the circle which is a reflection of C in the y-axis. [3] Centre of C = (3, 4). Hence, a circle which has a reflection of C in the y-axis has a centre of (-3, 4). The radius is the same as it the same size as C. $(x - (-3))^2 + (y - 4)^2 = 3^2$ $(x + 3)^2 + (y - 4)^2 = 9$ $X^2 + 6x + 9 + y^2 - 8y + 16 = 9$ $X^2 + 6x + y^2 - 8y + 16 = 0$ $X^2 + y^2 + 6x - 8y + 16 = 0$ (Ans)

and $a - b\sqrt{3}$ respectively, where a	and hare integers to be found
and $a - b\sqrt{3}$ respectively, where a $x^2 + y^2 - 100$	= 0 - (1)
	$= -\left(\frac{1}{\text{Gradient of } OP}\right)$
	$= -\left(\frac{1}{\frac{0-(-6)}{0-8}}\right)$
	$= -\left(\frac{0-8}{0+6}\right)$
Equation of <i>AB</i> : <i>y</i> – (-3)	$=$ $\frac{8}{6}$
	$=\frac{4}{3}$
Equation of AB: $y - (-3)$	$=\frac{4}{3}(x-4)$
y + 3	$=\frac{4}{3}X-\frac{16}{3}$
У	$= \frac{\frac{4}{3}x - \frac{16}{3}}{\frac{4}{3}x - \frac{16}{3} - 3}$ = $\frac{\frac{4}{3}x - \frac{16}{3} - 3$ = $\frac{\frac{4}{3}x - \frac{16}{3} - \frac{9}{3}}{\frac{16}{3}x - \frac{25}{3}(2)$
	$= \frac{4}{3}x - \frac{16}{3} - \frac{9}{3}$
	$= \frac{4}{3}x - \frac{25}{3} (2)$
Sub (1)into (2): $x^2 + \left(\frac{4}{3}x - \frac{25}{3}\right)^2 - 100$	= 0
$x^{2} + (\frac{16}{9}x^{2} - \frac{2(4)(25)}{9}x + \frac{625}{9}) - 100$	= 0
$\frac{9}{9}x^{2} + \frac{16}{9}x^{2} - \frac{200}{9}x + \frac{625}{9} - \frac{900}{9}$ $9x^{2} + 16x^{2} - 200x + 625 - 900$ $25x^{2} - 200x - 275$ $x^{2} - 8x - 11$	= 0
$9\ddot{x}^2 + 16\ddot{x}^2 - 200x + 625 - 900$	= 0
$25x^2 - 200x - 275$	= 0
x	$= \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(-11)}}{2(1)}$
	$= \frac{(3)^{2} \sqrt{(3)^{2} (7)^{2}}}{2(1)}$ $= \frac{8 \pm \sqrt{64 + 44}}{2}$ $8 \pm \sqrt{108}$
	$= \frac{8 \pm \sqrt{108}}{2}$
	$= 4 \pm \sqrt{27}$
	$= 4 \pm 3\sqrt{3}$
	= $4 + 3\sqrt{3}$ or $4 - 3\sqrt{3}$ (proven)
	[N2008/II/11]

I Linear Law

(Source: New Syllabus Additional Mathematics 8th Edition (2007), Dr Yeap Ban Har/ Teh Keng Seng/ Loh Cheng Yee)

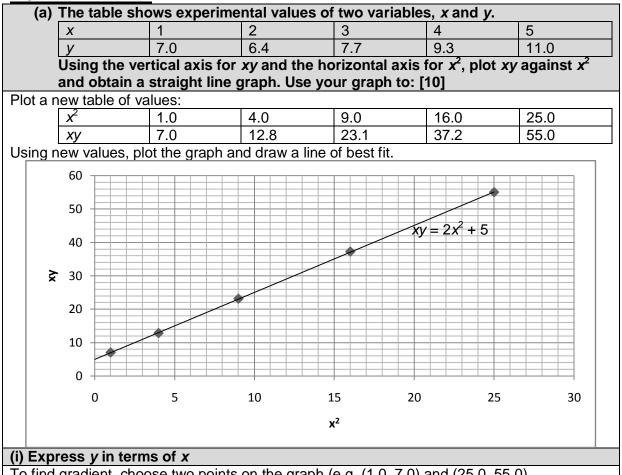
In research work, when two variables are believed to be related, a set of corresponding values are obtained. Any equation must be in the form of Y = mX + c, whereby:

- Y is a function of y (i.e. must contain y in any form such as ln y, sin y, y^2 , $\frac{x}{y}$)
- m is a constant term which is the gradient (i.e. cannot contain x or y terms)
- X is a function of x (i.e. must contain y in any form such as $\lg x$, $\cos x$, x^2y , $\frac{y}{x^2}$)
- c is a constant term which is the Y-intercept (i.e. cannot contain x or y terms)

However, not all experimental results obey a linear relationship. Examples of such graphs include:

$y = ax^b$	$y = \frac{a}{x} + bx$	$y = a\sqrt{x} + \frac{b}{\sqrt{x}}$	
Where a and b are constants			

With a little algebraic manipulation, each of the above relationships can be converted to a linear relationship. The table below shows the manipulation of some common graph types.


$y = ax + bx^2$	У	=	ах	+	bx ²	
Divide throughout by <i>x</i>	$\frac{y}{\frac{y}{x}}$	=	а	+	bx	
Hence, a straight line graph is obtained when $\frac{y}{x}(Y)$ is plotted against $x(X)$.						
Here, a denotes the Y-intercept and b denotes the gradient.						
$y = \frac{a}{x} + b$	У	=	a x	+	b	
	У	=	$a(\frac{1}{x})$	+	b	
Hence, a straight line graph is obtained when y (Y) is plotted against $\frac{1}{x}(X)$.						
Here, a denotes the gradient and b denotes the Y-intercept.						
$y = a\sqrt{x} + \frac{b}{\sqrt{x}}$	У		a√x	+	$\frac{b}{\sqrt{x}}$	
Multiply throughout by \sqrt{x}	$y\sqrt{x}$	=	ах	+	b	
Hence, a straight line graph is obtained when $y\sqrt{x}$ (Y) is plotted against x (X). Here, a denotes the gradient and b denotes the Y-intercept.						
$xy = \frac{a}{x} + bx$	ху	=	a x	+	bx	
Divide throughout by x	У	=	$\frac{\hat{a}}{x^2}$	+	bx	
	У	=	$a(\frac{1}{x^2})$	+	bx	
Hence, a straight line graph is obtained when $y(Y)$ is plotted against $\frac{1}{y^2}(X)$.						
Here, a denotes the gradient and b denotes the Y-intercept.						

4038 ADDITIONAL MATHEMATICS TOPIC 2: GEOMETRY AND TRIGONOMETRY

b <i>u</i>			by:			
$y = ae^{bx}$	У	=	ae ^{bx}			
Taking In on both sides	ln y	=	In (<i>ae^{bx}</i>)			
Using product law to split up ln (<i>ae^{kx}</i>)	ln y	=	In a	+	In e ^{bx}	
Using power law to change In e ^{kx}	ln y	=	In a	+	<i>bx</i> ln <i>e</i>	
Since In e = 1	ln y	=	In a	+	bx	
Hence, a straight line graph is obtained when $\ln y$ (Y) is plotted against x (X). Here, $\ln a$ denotes the Y-intercept and b denotes the gradient.						
$y = ax^b$	V	=	ax ^b			
Taking Ig on both sides	lg y	=	lg (ax ^b)			
Using product law to split up lg (ax^b)	lg ý		lg a	+	lg x ^b	
Using power law to change lg x^{b}	lg y		lg a		-	
Hence, a straight line graph is obtained when $\lg y(Y)$ is plotted against $\lg x(X)$. Here, $\lg a$ denotes the Y-intercept and b denotes the gradient.						
xy = a	ху	=	а			
Divide throughout by <i>x</i>	У	=	a x			
	У	=	$a(\frac{1}{x})$			
Hence, a straight line graph is obtained when $y(Y)$ is plotted against $\frac{1}{x}(X)$. Here, <i>a</i> denotes the gradient and 0 denotes the <i>Y</i> -intercept (i.e. passes through origin <i>O</i>).						

SUB-TOPIC 2.2: COORDINATE GEOMETRY IN TWO DIMENSIONS

WORKED EXAMPLE

To find gradient, choose two points on the graph (e.g. (1.0, 7.0) and (25.0, 55.0)

У	= =	$\frac{55.0 - 7.0}{25.0 - 1.0}$ $\frac{48.0}{24.0}$ 2 5.0 $mX + c$ $2(x^{2}) + 5.0$ $2x + \frac{5}{x} (Ans)$				
(ii) Estimate the value of x when $y = \frac{30}{x}$.						
<i>y</i> <i>xy</i> Hence, from the graph, when $xy = 30$, x^2 <i>x</i>	= = = = = = = = = = = = = = = = = = =	30 x 30 12.5 3.536 3.54 (Ans to 3sf)				
Variables x and y are related in such a way that, when $y - x$ is plotted against x^2 , a straight line is produced which passes through the points $A(4, 6)$, $B(3, 4)$ and $P(p, 4.48)$, as shown in the diagram. Find [6]						
(i) y in terms of x						
To find gradient, choose the two given points on t	he g	raph (i.e. (4, 6) and (3, 4)				
Gradient Hence, equation of line: $Y - Y_1$ (y - x) - (4) y - x - 4 y	= = = = = =	$\frac{6-4}{4-3}$ $\frac{2}{1}$ 2 $m(X - X_{1})$ $2(x^{2} - 3)$ $2x^{2} - 6$ $2x^{2} + x + 4 - 6$ $2x^{2} + x - 2 \text{ (Ans)}$				
(ii) The value of p						
Find value of $x^2 = p$ when $(y - x) = 4.48$ y - x 4.48 6.48 x^2 p (iii) The value of x and of y at the point At P, x^2 x At P, $y - x$ y - x Y	= <u>P.</u> = = =	$2x^{2} + x - 2$ $2x^{2} - 2$ $2x^{2} - 2$ $2x^{2}$ 3.24 $3.24 (Ans)$ $3.24 (Ans)$ 4.48 4.48 4.48 $4.48 + 1.8$ $6.28 (Ans)$				
		[N2000/II/4]				