		_		_		
4	٠	5	4	Р	NЛ	
	٠	-				

n

CHEMISTRY NOTES FOR IGCSE By Sarah Jamil

30 April 2012 04:55 PM

The Particulate Nature of Matter

Impurities lower the melting point or freezing point and increase the boiling point of a substance

30 April 2012 04:55 PM

Methods of Separation

- 1. Filtration/ Decanting
- Solid + Solid = 4,5

Liquid = 9

Gas + Gas = 10

- 2. Evaporation Solid + Liquid = 1,2,3,63. Crystallization
- Liquid + Liquid = 7,84. Selective Solubility
- 5. Magnet
- 6. Simple Distillation
- 7. Separating Funnel
- 8. Fractional Distillation
- 9. Paper Chromatography
- 10. Diffusion

Rf= Distance moved by compound/ Distance moved by solvent front

30 April 2012 11:52 AM

Atoms, Elements, and Compounds

Isotope- atoms of the same element with the same number of protons and electrons, but with a different number of neutrons.

Covalent Bonding- between a NON METAL and a NON METAL.

Ionic Bonding- between a METAL and a NON METAL. The metal loses electrons and the non metal gains electrons.

Allotropes- Different structures of the same element with different physical properties. e.g. graphite and diamond.

Silicon IV Oxide Structure

2	
KEY Silicon atoms	
Oxygen atoms	
• •	
Metallic Bonding- a lattice of positive ions in a sea of electron	15

30 April 2012 04:55 PM

Stoichiometry Percentage yield= actual yield / theoretical yield n = v n = c x v<u>n= m</u> 24 mr How to find empirical formula Find mass of elements Find moles by dividing by mr Divide number of moles by the smallest number to get ratio Carbon Hydrogen e.g. mass 80 g 20 g Mr 12 1 6.67 20 6.67 6.67 ratio 1 3 so empirical formula is CH3 How to find molecular formula Find Mr of compound using empirical formula. Divide this by the formula mass of the compound. So the formula is : Formula Mass Mr of comp e.g. Formula mass for a compound is 30. It's empirical formula is CH3. What is it's molecular mass? Mr of compound = 15So 30/15 = 2 so molecular formula is C2H6 Finding the mass of a substance using mole ratio

	Find the male vetic	
	Find the mole ratio	
	Multiply the number you get with the mole ra	atio
	Multiply the Mr of each substance to the num	nber you get to get mass
	e.g. In the complete combustion of methane	, what mass of oxygen combines with 64 g
	of methane and how much carbon dioxide is	produced?
	CH4 + 202 -> CO2 + 2H2O	Mr of CH4 = 16
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N of CH4 = 64 g/ 16 = 4
	4 8 4	
	x 32 x 44 K x Mr to get n	
	=256 = 176	
	So 256 g of O2 and 176 g of CO2 combine wit	h 64 g of CH4
	Calculating the volume of a solution in a read	tion
	-	
	Find the mole ratio	
	Find n of the known substance	
	Multiply the number you get with the mole ra	
	Divide by the concentration to get volume	
	e.g. What volume of 0.5 mol/dm ³ hydrochlor	ic acid reacts with 0.12 g of magnesium?
	с , ,	
	Mg + 2HCl \longrightarrow MgCl2 + H2	
	1 2 4 0.12/2	4 0.005
	0.005 0.01 If OF Mg = 0.12/24	4 = 0.005
	0.5 divide by c to get v	
	0.01/ 0.5 = 0.02 dm ³ x 1000	
	So 20 cm ³ of 0.5 mol/dm ³ hydrochloric acid re	eacts with 0.12 g of magnesium.
1		

30 April 2012 04:55 PM

Electrolysis

In a concentrated solution always take the halogen instead of the hydroxide ion, but in a dilute solution, do the opposite.

Electrolysis of copper with copper electrodes, the anode is impure and the cathode is pure. The copper in the anode dissolves, and a layer of pure copper builds up on the cathode

When you have hydrogen or a metal at the cathode, if the metal is more reactive than hydrogen, hydrogen is formed. If it's less reactive than hydrogen, the metal forms.

In electroplating the object to be plated is at the cathode, the metal to plate with is the anode, and the electrolyte is the anode metal nitrate.

Extracting aluminium

Bauxite ore is purified (Al2O3) Alumina is dissolved in cryolite to lower melting point. Electrolysis using carbon electrodes is carried out.

30 April 2012 04:55 PM

Chemical Energetics

H =Heat of product - Heat of reactant. If product is negative the reaction is exothermic, if positive, endothermic.

Exo= combustion, neutralization. Endo= photosynthesis, thermal decomposition. 30 April 2012 04:55 PM

Chemical Reactions

If you increase anything on the left side of the reaction (except temperature and pressure), equilibrium will shift to the right, and vice versa for increasing anything on the right.

If heat is on the left side of the equation, the reaction is endothermic, and exothermic for opposite.

In an exothermic reaction if you decrease the temperature, the equilibrium will shift to the right. In an endothermic reaction if you decrease the temperature, the equilibrium will shift to the left.

30 April 2012 04:55 PM

Acids, Bases, and Salts

Calcium is insoluble in sodium hydroxide and ammonia. Zinc is soluble in both NaOH and NH3 Aluminum is soluble in NaOH but insoluble in NH3

To make a insoluble salt, use an soluble reactant. Take A from a nitrate, and B from sodium. e.g. To prepare calcium fluoride, take calcium nitrate and sodium fluoride

To make an soluble salt, use a insoluble reactant. Use titration or precipitation.

Metal oxide and hydroxide plus acid gives salt plus water Metal carbonate plus acid gives salt plus carbon dioxide plus water Metal plus acid gives salt plus hydrogen

All G1 salts are soluble All ammonium salts are soluble All nitrates are soluble All chlorides are soluble except lead and silver chloride All sulphates are soluble except calcium, barium, and lead sulphate All carbonates are insoluble except G1 or ammonium carbonates

30 April 2012 04:55 PM

P	er	ſİ	0	C	i (С	T	а	k		e								
Grou	p 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1 2	al1 H 3	4 Be				on Mei kali Me kaline	tals etals Metals	;	• N • M • H	oble G letalloid alogen	ases Is s		5 B	6 C	7 N	8	9 F	2 He 10 Ne	
3	11 Na 19	12 Mg 20	21	22	0 R	ansitio are Ea <mark>24</mark>	n Meta rth Elei 25	ments	27	(ner M)	etais 29	30	13 AI 31	14 Si 32	15 P 33	16 S 34	17 CI 35	18 Ar 36	
4	К 37 Rb	Ca 38 Sr	Sc 39 ¥	Ti 40 Zr	41 Nb	Cr 42 Mo	Mn 43 Tc	Fe 44 Ru	Co 45 Rh	Ni 46 Pd	Cu 47 Ag	Zn 48 Cd	Ga 49 In	Ge 50 Sn	As 51 Sb	Se 52 Te	Br 53 1	Kr 54 Xe	
6 7	⁵⁵ Cs 87 Fr	56 Ba 88 Ra	57* La 89** Ac	72 Hf 104 Rf	73 Ta 105 Db	74 W 106 Sq	75 Re 107 Bh	76 Os 108 Hs	77 Ir 109 Mt	78 Pt 110 Uun	79 Au 111 Uuu	80 Hg 112 Uub	81 TI	82 Pb 114 Uuq	83 Bi	84 Po 116 Uuh	At	86 Rn 118 Uuc	
*I a	nthani	des	58	59	60	61	62	63	64	65	66	67	68	69	70	71		_	
**A	ctinide	 95	090 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr			

30 April 2012 04:55 PM

Metals

Reactivity Series	
K Na	If metals react with cold water they form hydroxides. If they react with steam they form oxides When metals react with cold water, steam, or acids, they always form hydrogen.
Ca Mg Al C Zn	Thermal decomposition of metal carbonate gives metal oxide plus carbon dioxide. Thermal decomposition of metal hydroxide gives metal oxide plus water(except G1!). Thermal decomposition of G1 nitrates gives G1 metal nitride plus oxygen. Thermal decomposition of metal nitrate gives metal oxide plus nitrogen dioxide plus oxygen
Fe Pb	Extraction of zinc
Cu Ag Au	The ore is zinc blende(ZnS) Zinc blende is burnt in oxygen to form sulphur dioxide and zinc oxide.
	The zinc oxide is reduced by coke to give zinc and carbon dioxide.

Extraction of iron

Takes place in blast furnace.

Raw materials: limestone, haematite, and coke.

- 1. Coke burns with oxygen to form carbon dioxide
- 2. The carbon dioxide reacts with coke to form carbon monoxide
- 3. The carbon monoxide reacts with the haematite to form iron and carbon dioxide
- 4. The limestone decomposes to calcium oxide and carbon dioxide
- 5. The calcium oxide reacts with the impurities (SiO2) to form slag (CaSiO3)

Uses of zinc	Uses of copper
Galvanizing	Hot water pipes- coz it cant reduce water
Making brass	Electric wires
Sacrificial protection	Making brass
Uses of aluminium	
Airplane bodies- low density strong	no corrosion
An plane boules- low density, strong	
Containers- non toxic	
Cans- non toxic	
Overhead cables- low density, stron	g, ductile.
	Voltaic Cell
Cell a device that convert chamical on	
Cell- a device that convert chemical en	ergy to electrical energy.
Direction of electron flow is always fro	m less reactive metal to more reactive metal.
Anode: More reactive metal	

Cathode: Less reactive metal

To increase voltage

Increase concentration of electrolyte Use two metals that vary greatly in the reactivity series

What happens to electrodes

Anode: gets thinner (more reactive) Cathode: gets thicker OR stays the same with bubbles (less reactive)

e.g. when the anode reacts with sulphuric acid it forms hydrogen and zinc sulphate and the hydrogen bubbles. OR the zinc is oxidised and hydrogen reduced, so hydrogen is the oxidising agent and it gains electrons so the cathode gets thicker.

<u>Oxidising agent</u> : gains electrons but gets reduced <u>Reducing agent</u>: loses electrons but gets oxidised

To prove metal X is more reactive than Y

Metal X gets thinner Metal X reacts with hydrogen

Cathode gets thicker when electrolyte has same metal as anode e.g. Cu and CuSO4

Air and Water

Pollutants in air								
	Pollutant	Source	Harmful Effect	Solution				
	Carbon Monoxide	Incomplete combustion of fuel.	Takes O2 from cells, causes death.	Use catalytic converter in car.				
	Sulphur Dioxide	Burning coal, factories, combustion of sulphur based fuel.	Acid rain.	Uses a catalytic converter in chimney.				
	Oxides of Nitrogen	Car engine, under high temp and pressure N2 reacts w/ O2 to form oxides of nitrogen.	Acid rain.	Use a catalytic converter in car.				
	Lead Vapour	Combustion of leaded petrol.	Causes brain damage in young children	Use unleaded petrol.				

Haber Process

🔶 Reaction in catalytic converter

```
Conditions-
```

2CO + 2NO -	\rightarrow N2 + 2CO2

Making steel

	• · · · ·
Catalyst Vanadium (V) Oxide	Uses of ammonia
Temp 450°C	
Pressure 200 atm	Making nitric acid
	Making fertiliser
Praction	
Reaction-	Uses of oxygen
	10
N2 + $3H2 \longrightarrow 2NH3 + Heat$	Our reach done flowe
	Oxyacetylene name
To recycle gases pass them over the catalyst again	In hospitals

To recycle gases pass them over the catalyst again.

30 April 2012 04:55 PM

Sulnhur		
aipilai		
Contact Process	Uses of SO2	
Conditions-	Making paper (bleaches	
	wood puip) Food preservative (kills	
Catalyst Iron	bacteria)	
Pressure 2 atm	Making sulphuric acid	
Reactions- reversible	Uses of H2SO4	
	Making paints	
$5 + 02 \longrightarrow 502$	Making fertilisers	
$503 + H2S04 \rightarrow H2S207$	Making detergents	
H2S2O7 + H2O → 2H2SO4	In car batteries	

30 April 2012 04:55 PM

CaO- quicklime/lime CaCO3- limestone Ca(OH)2(s)- slaked lime Ca(OH)2(s)- limewater All G1 carbonates don't decompose except lithium carbonate, and all metal carbonates decompose to form MO and CO2. CaO and CaCO3 are used to neutralise soil acidity coz they are insoluble and slightly soluble respectively so they don't get washed away Heat limestone to get lime, add a little water to it to get slaked lime, add even more water to get limewater, add carbonic acid get limestone.

30 April 2012 04:55 PM

Or	rganic chemistry	/	Small Molecules • Low boiling point • Light in colour • Easy to light • Runny	Refinary Gas Petrol 30°C	Bottled Gas
	Monomer- a small molecule that can be polymerised into a polym	ner.	_ +		Chemicals
	Isomer- compound with the same molecular formula but differen structural formula.	t	Large Molecules • High boiling point	Kerosine 180°C	Jet fuel, Paraffin for lighting and beating
	Homologous Series- Have same general formula and functional		Dark in colour Hard to light Thick	Diesel 260°C	Diesel fuels
	group, and differ by CH2		Crude Oil	Fuel Oil	Fuel for Ships, Factories
	Functional Group- group of atoms in an organic compound that determines its chemical reactions or properties. Alkane doesn't h	ave			and Central Heating Lubricating
			0000		Polishes
	Alkane- CnH2n+ 2 Alkene- CnH2n		Heater	Bitumen 340°C	Roads and Roofing
	Carboxylic Acid- CnH2n+1COOH Alcohol- CnH2n+1OH				
	Reactions of Alkanes	Reactions of A	Alkenes		
	Combustion-	All alkene read	ctions are based or	the double bond except co	ombustion.
	Complete(excess O2)= CO2 + H2O	Addition of hy	ydrogen (hydrogei	nation)	
	Incomplete(lack of O2)= CO + H2O	Alkene + H2 g	ives alkane (using r	nickel catalyst and 140°C te	mp)
	Help for balancing:	Addition of ch	alorine (chlorinatic	201	
	Complete- $C_nH_{2n+2} + 3_n+1/2 + O2 \longrightarrow nCO2 + (n+1)H2O$ Incomplete- $C_nH_{2n+2} + 2_n+1/2 + O2 \longrightarrow nCO + (n+1)H2O$	Alkene + Cl2 g	ives 1,2 dichloroall	kane	
	Cracking-	Addition of b	romine(bromination	on, test for alkene)	
	Conditions: High temp/ pressure, catalyst SiO2 or Al2O3	Alkene + Br2 g	gives 1,2, dibromoa	Ikane	
	Alkane gives- shorter alkane + alkene (shorter than alkane)	Colour change	e from orange to co	blourless	
	OR 2 or more alkenes and hydrogen	Addition of w	ater (hydration)		
	Substitution-	Alkene + H2O	gives alcohol (usir	g phosphoric acid catalyst	and 250°C temp)
	Condition-light	Addition of H	Cl		
	Hydrogen is replaced by halogen	Alkene + HCl g	gives 1,2 hydrochlo	roalkane	
	CH ₄ + Cl ₂ CH ₃ Cl + HCl				
	chloromethane	2 ways to get	chloroethane		
	CH ₃ Cl + Cl ₂	Substitution-	ethane + chlorine e	vives chloroethane	
	dichloromethane	Better as it give	ves pure product		
	CH ₂ Cl ₂ + Cl ₂ CHCl ₃ + HCl	OR ethene + H	HCl gives chloroeth	ane + HCl	
	tetrachloromethane	Disadvantage	es of monomers		
Test	t to distinguish between Ethanol and Ethanoic Acid	Non biodegra	dable		
		Form toxic ga	ses when burning o	or combusting	
Litm	ted splint will catch fire when exposed to ethanol				

Esters	Proparation o						
	reparation o	Alcohols	•				
Reversible	Fermentation						
Alkyl Alkanoate	sugar et	hanol + CC	2				
Alkyl comes from alcohol	Add yeast at 3	B7°C	52				
Alkanoate comes from alkanoic acid	•						
e g propyl propanate	Carried out in	airlock ve	ssel bcoz in c	contact w	vith oxygen the		
So we use propanol and propanoic acid	alconol will tu	rn to carb	oxylic acid.				
CH3CH2CH2COO/CH2CH2CH3	For concentra	ted ethan	ol use fractio	onal distil	llation.		
The alcohol part goes at the end and the acid part at the beginning.	lines of others	als Fred I	Duinte Calue				
e.g. ethyl methanoate	Uses of ethan	oi: Fuel, I	Drinks, Solvei	nı			
So we use ethanol and methanoic acid	Hydration						
CH3COO/CH2CH3	Allena LU20		hol (using L	2004 am	d 250°C tomm)		
	Alkene + H2U	gives alco	onoi (using H	3PO4 an	a 250 C temp)		
	Hydration is b	etter as it	gives one pr	oduct.			
Reactions of ethanol							
Combustion	alcohol + acid	gives este	r plus water	(reversil	ble rxn)		
ethanol + 3 oxygen (excess) gives 2 carbon dioxide + 3 water	Concentrated	H2SO4 is a	added as it is	a power	ful		
	dehydrating ag	gent that p	prevents a ba	ackward	rxn.		
Oxidation							
ethanol + [O](warm) gives ethanoic acid	Ester general	formula is	. 0				
	Ester general	Torritata is	, e II				
How to distinguish between the two? If it says excess that means its			R-C-O-R'				
combustion.	R can't be H o	r it will be	e a carboxylic	acid			
	ll	r	methyl metha	anoate			
	H-C-O-CH3	3					
Hydrolysis							
Alkaline Hydrolysis							
	Condense	ation Poly	merisation				
H2O/ NaOH (any base) Broaking by H2O in procence of alkali /alkali modium	Fliminati	on of H2O	molecules				
Gives you back the alcohol and acid from which the ester was formed	Liiiiiiiddi	011 0j 1120	molecules				
e.g.	<u>Addition</u>		<u>Condensati</u>	<u>on</u>			
CH3COOCH2CH3 + NaOH → CH3COONa + CH3CH2OH	1 monor	or	2 tunos				
· · · · · · · · · · · · · · · · · · ·	Monome	r A	Monomer	AB			
ethyl ethanoate sodium ethanoate ethanol	Polymer .	AAAA	Polymer A	BABAB			
Acid Hydrolysis							
H2Q/ HCl (any acid)		Starch(co	omplex carb)				
Breaking by H2O in presence of acid/ acidic medium		Clusses is					
Gives you 2 acids and an alcohol as neither acid nor alcohol reacts with acids		GIUCOSE IS	onomer OH				
e.g. H ⁺ (an)		-0-	0				
		0	deed at a				
athyl athenasta athenaic acid athenal		By acia ny To identif	varoiysis you v monomer i	get the r ise nanei	nonomer r chromatoaranhv	,	
		, o raencij	, momenter e	ie pape.	emenaceg.ap.i.y		
Making Soap(alkaline hydrolysis)							
C17H35COOH + NaOH gives C17H35COONa + H2O	P	Polvesters					
	F	Proteins ar	re n co n co				
	^	Nylon is n i	n co co				
General formula	7	erylene is	<i>LU CO CO</i>				
RCO/OR' + water(add OH to RCO and H to OR') gives RCOOH + R' qH							
NaOH/gives RCOONA		~		\sim	Ц		
— SOAP		$\Gamma \Omega$		Ŷ	Ч Ч	Ч	٦
				11	Ι	I	I

 $\begin{bmatrix} 0 & 0 & H & H \\ H & H & H \\ C & C & N & C \\ \end{bmatrix}_{n}$ NaOH gives RCOONA SOAP Nylon