Calculus (4): Further Techniques: Trigonometric Functions

17

So far we can differentiate single terms such as x^5 , polynomials such as $2x^3 - 3x + \frac{1}{x}$ and composite functions such as $(2x^3 - 1)^4$.

We now extend the range of functions we can deal with.

Fractional Indices

If
$$y = ax^n$$
, then you will recall that $\frac{dy}{dx} = nax^{n-1}$ and $\int x^n dx = \frac{x^{n-1}}{n+1} + c$.

The rules for differentiation and integration still hold when the index n, is a rational number, i.e. a fraction.

Example 1

Differentiate (a)
$$x^{\frac{2}{5}}$$
, (b) $\frac{1}{\sqrt{x}}$, (c) $\sqrt{x^2 - 2x - 3}$ wrt x.

(a)
$$y = x^{\frac{2}{3}}$$

Then
$$\frac{dy}{dx} = \frac{2}{3}x^{\frac{2}{3}-1} = \frac{2}{3}x^{-\frac{1}{3}}$$

(b)
$$y = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}}$$

(c)
$$y = (x^2 - 2x - 3)^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{1}{2}(x^2 - 2x - 3)^{\frac{1}{2}} \times (2x - 2)$$

=
$$(x-1)(x^2-2x-3)^{-\frac{1}{2}}$$
 or $\frac{x-1}{\sqrt{x^2-2x-3}}$

Example 2. The first
$$(a) \int_{x}^{x} \frac{1}{2} dx$$
, $(b) \int_{x}^{x} 2x^{\frac{1}{2}} dx$.
(a) $\int_{x}^{-1} dx = \frac{e^{-\frac{1}{2}+1}}{\frac{1}{3}+1} + c = \frac{x^{\frac{1}{2}}}{\frac{1}{3}} + c = \frac{3}{2}x^{\frac{1}{3}} + c$
Check by differentiating.
(b) $\int_{x}^{x} 2x^{\frac{1}{2}} dx = \left[\frac{2x^{\frac{1}{2}+1}}{2}\right]^{x}$

(b)
$$\int_{4}^{9} 2x^{\frac{3}{2}} dx = \left[\frac{2x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\right]_{4}^{9}$$
$$= \left[\frac{2x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{4}^{9} = \left[\frac{4}{5}x^{\frac{3}{2}}\right]_{4}^{9}$$
$$= \left(\frac{4}{5} \times 9^{\frac{3}{2}}\right) - \left(\frac{4}{5} \times 4^{\frac{3}{2}}\right)$$

$$= \left(\frac{4}{3} \times 9^{\frac{1}{3}}\right) - \left(\frac{4}{3} \times 4^{\frac{1}{3}}\right)$$

$$= \left(\frac{4}{5} \times 243\right) - \left(\frac{4}{5} \times 32\right) = \frac{4}{5}(243 - 32) = \frac{4}{5} \times 211 = 168\frac{2}{5}$$

Integration of Powers of the Linear Function ax + b

If $y = (ax + b)^{n+1}$, then $\frac{dy}{dx} = (n + 1)a(ax + b)^n$.

Hence $\int (n+1)a(ax+b)^n dx = (ax+b)^{n+1}$

and so

$$\int (ax + b)^n dx = \frac{(ax + b)^{n+1}}{(n+1)a} + c \quad \text{where } n \neq -1$$

This result only applies to a **linear function** ax + b. The integration of powers of non-linear functions such as $ax^2 + b$ cannot be done in this way and is outside our work.

The case where n = -1 will be studied in Chapter 18.

Example 3

Find (a)
$$\int (2x-1)^3 dx$$
, (b) $\int \frac{dx}{(2x-1)^2}$ (c) $\int \sqrt[5]{2x-1} dx$.

(a) Here
$$a = 2$$
, $b = -1$ and $n = 3$.

So
$$\int (2x-1)^3 dx = \frac{(2x-1)^4}{4\times 2} + c = \frac{1}{8}(2x-1)^4 + c$$

(b)
$$\int \frac{dx}{(3x+2)^2}$$
 is short for $\int \frac{1}{(3x+2)^2} dx = \frac{(3x+2)^2}{(-1)(3)^2} + c$
= $-\frac{1}{2}(3x+2)^{-1} + c$

$$=-\frac{1}{3(3x+2)}+c$$

(c)
$$\int_{1}^{5} \sqrt{2x-1} dx = \int_{1}^{5} (2x-1)^{\frac{1}{2}} dx$$
$$= \left[\frac{(2x-1)^{\frac{3}{2}}}{2x-\frac{5}{2}} \right]_{1}^{5}$$
$$= \left(\frac{1}{4} \times 9^{\frac{5}{2}} \right) - \left(\frac{1}{4} \times 1^{\frac{5}{2}} \right) = 9 - \frac{1}{4} = 8^{\frac{5}{4}}$$

Find the area bounded by the curve $y = \frac{1}{\sqrt{2x-3}}$, the x-axis and the lines x = 2, x = 6.

Fig.17.1

As $\sqrt{2x-3}$ is positive for $x > 1\frac{1}{2}$, y is real and positive in the area required.

Area =
$$\int_{2}^{6} (2x - 3)^{\frac{1}{2}} dx = \left[\frac{(2x - 3)^{\frac{1}{2}}}{2 \times \frac{1}{2}} \right]_{2}^{6}$$

= $\left[(2x - 3)^{\frac{1}{2}} \right]_{2}^{6} = (9^{\frac{1}{2}}) - (1^{\frac{1}{2}}) = 2$

Example 5

The section of the curve $y = \frac{1}{\sqrt{x_{n-1}}}$ between the lines x = 2 and x = 9 is rotated about the x-axis through 360°. Find the volume of the solid created.

You will recall that the volume of a solid of revolution = $\int \pi y^2 dx$.

Here $y = (x - 1)^{-\frac{1}{3}}$.

So the volume = $\int_{-\pi}^{9} \pi(x-1)^{-\frac{3}{2}} dx$

$$= \left[\frac{\pi(x-1)^{\frac{1}{3}}}{\frac{1}{3}}\right]_{2}^{9} = \left[3\pi(x-1)^{\frac{1}{3}}\right]_{2}^{9} = (3\pi \times 2) - (3\pi \times 1) = 3\pi$$

If $v = 2\sqrt{9 - x^2}$, what is the approximate change in y when x is increased from 2 to

When x = k, $\delta y = \left(\frac{dy}{dx}\right)$, δx , where $\left(\frac{dy}{dx}\right)$, is the value of $\frac{dy}{dx}$ when x = k. Here k = 2 and $\delta x = 0.01$.

$$y = 2(9 - x^2)^{\frac{1}{2}}$$
 so $\frac{dy}{dx} = 2 \times \frac{1}{2}(9 - x^2)^{-\frac{1}{2}}(-2x) = -2x(9 - x^2)^{\frac{1}{2}}$.
 $\left(\frac{dy}{dx}\right)_{x=2} = -4(5)^{\frac{1}{2}} = \frac{-4}{\sqrt{5}}$

Hence $\delta y \approx -\frac{4}{\sqrt{5}} \times 0.01 = -0.018$ (y has decreased).

Exercise 17.1 (Answers on page 640.)

1 Differentiate wrt x: (a) r = 1

(a)
$$x^{-\frac{1}{4}}$$

(d) $2x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}$
(g) $\frac{4}{dx}$

$$-2x^{-\frac{1}{2}}$$
 (e) $\sqrt[3]{x^3 - 6x^2}$
(h) $\sqrt{4x^3 - 3}$

(b)
$$4\sqrt{x}$$

(e) $\sqrt[3]{x^3 - 6x^2}$
(h) $\sqrt{4x^3 - 3}$

(c)
$$\sqrt{4x-3}$$

(f) $2x^{\frac{3}{2}}$

(i)
$$\sqrt{1-2x+4x^2}$$

2 Integrate wrt x:

(a)
$$x^{\frac{1}{4}}$$
 (b) $x^{-\frac{1}{2}}$
(d) $\frac{1}{2}x^{-\frac{2}{3}}$ (e) $\frac{x^{\frac{2}{3}}}{}$

(e)
$$\frac{x^{\frac{2}{3}}-x^{\frac{1}{2}}}{x^{\frac{1}{3}}}$$

(c)
$$x^{\frac{2}{3}} - x^{-\frac{1}{3}}$$

(f) $5x^{\frac{2}{3}}$

(g)
$$\frac{3}{\sqrt{x}}$$

(h)
$$\frac{1}{3}x^{-\frac{1}{3}}$$

(i)
$$\frac{x-x^{\frac{3}{2}}}{x^{\frac{1}{2}}}$$

3 Evaluate (a) $\int_{0}^{4} \frac{\sqrt{x}}{2} dx$ (b) $\int_{0}^{-1} x^{\frac{1}{3}} dx$ (c) $\int_{0}^{1} x^{\frac{1}{3}} dx$ (d) $\int_{0}^{4} x^{-\frac{2}{3}} dx$ (e) $\int_{1}^{16} x^{-\frac{1}{2}} dx$

Integrate wrt x:
(a)
$$(2x-3)^2$$
 (b) $(2x+5)^4$

(c)
$$(x-2)^{-3}$$

(f) $(2x+3)^{-2}$

(d)
$$\sqrt{x-3}$$

(g) $\frac{1}{\sqrt{2x+3}}$
(i) $(3x+2)^4$

(k)
$$(4x-1)^{\frac{1}{2}}$$

(i)
$$\frac{1}{\sqrt{3-2x}}$$

(h)
$$(3-4x)^3$$

(k) $(4x-1)^{\frac{1}{3}}$
(n) $(1-2x)^{-2}$

(1)
$$(2x-5)^{-\frac{1}{2}}$$

(a)
$$\int_{-1}^{1} (2x + 1)^2 dx$$

(b)
$$\int_{1}^{5} \sqrt{3x+1} \, dx$$

(d) $\int_{0}^{6} \sqrt{1-3x} \, dx$

(c)
$$\int_0^1 (3x-1)^2 dx$$

(e) $\int_2^{\frac{4}{3}} (3x-4)^3 dx$

(f)
$$\int_{0}^{2} \sqrt{2x+5} \, dx$$

(g)
$$\int_{1}^{6} \frac{dx}{\sqrt{x+3}}$$
 (h) $\int_{1}^{2} (3x-2)^{3} dx$

- 6 Calculate the area bounded by the curve y = (3x 1)⁻², the x-axis and the lines x = 1, x = 3.
- 7 The part of the curve $y = \frac{1}{2x-3}$ between x = 2 and x = 3 is rotated about the x-axis through 360°. Find the volume of the solid of revolution.
- 8 If $y = 3\sqrt{x}$, find the approximate change in y when x is increased from 4 to 4.01.
- 9 Given that $y = 3\sqrt{9 + x^2}$, find the change in y approximately when x is decreased from 4 to 3.99.
- 10 Given that $T = 9r^{\frac{4}{3}}$ and that r is increased from 8 to 8.01, find the approximate change in T.
- 11 If $P = kv^{\frac{2}{3}}$, where k is a constant, find the approximate percentage change in P if v is increased by 3% when it is 5.
- 12 If $V = 10x^{\frac{3}{2}}$, find the approximate change in V when x is decreased from 4 to 3.998.

Differentiation of the Product of Two Functions

 $y=(3x-1)^3(x^2+5)^2$ is a product of two functions of x, $(3x-1)^3$ and $(x^2+5)^2$. Each of these can be differentiated but how can we find $\frac{dy}{dt}$? As we shall see, the result is NOT the product of their derivatives.

Let y = uv where u and v are each functions of x. Suppose x has an increment δx . This will produce increments δu in u and δv in v and finally produce an increment δv in v.

So $v + \delta v = (u + \delta u)(v + \delta v) = uv + u\delta v + v\delta u + (\delta u)(\delta v)$

Then $\delta v = u \delta v + v \delta u + (\delta u)(\delta v)$

and $\frac{\delta y}{\delta z} = u \frac{\delta v}{\delta z} + v \frac{\delta u}{\delta z} + \frac{\delta u}{\delta z} \delta v$

Now let $\delta x \to 0$. Consequently $\delta u \to 0$, $\delta v \to 0$, $\frac{\delta u}{\delta v} \to \frac{du}{dv}$, $\frac{\delta v}{\delta v} \to \frac{dv}{dv}$ and $\frac{\delta v}{\delta v} \to \frac{dv}{dv}$.

So, as
$$\delta x \to 0$$
, $\frac{dy}{dr} \to u \frac{dv}{dr} + v \frac{du}{dr}$.

Hence we have the **product rule** for y = uv:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u \frac{\mathrm{d}v}{\mathrm{d}x} + v \frac{\mathrm{d}u}{\mathrm{d}x}$$

where u and v are functions of x.

As the result is symmetrical in u and v, it does not matter which function is chosen as u or v.

Example 7

Differentiate $(3x-2)(x^3+4)$ wrt x.

Take
$$u = 3x - 2$$
, $v = x^3 + 4$.
 $\frac{du}{dx} = 3$, $\frac{dv}{dx} = 3x^2$
Then $\frac{dv}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
 $= (3x - 2) \times 3x^2 + (x^3 + 4) \times 3$
 $= 9x^3 - 6u^2 + 3x^3 + 12 = 12x^3 - 6u^2 + 12$

Differentiate $x^3(2x-1)^4$ wrt x.

Take
$$u = x^3$$
, $v = (2x - 1)^4$.

$$\frac{dy}{dx} = x^3 \times \underbrace{4(2x-1)^3 \times 2 + (2x-1)^4 \times 3x^2}_{u} \xrightarrow{\frac{dy}{dx}} \uparrow \qquad \uparrow \qquad \uparrow \qquad \frac{du}{dx}$$

In this example, we simplify as far as possible and leave the result in factor form.

$$\frac{dy}{dx} = x^2(2x-1)^3[x \times 8 + (2x-1)3]$$
$$= x^2(2x-1)^3(14x-3)$$

Example 9

Differentiate $(3x - 1)^3(x^2 + 5)^2$ wrt x.

$$\frac{dy}{dx} = (3x - 1)^3 \times 2(x^2 + 5) \times 2x + (x^2 + 5)^2 \times 3(3x - 1)^2 \times 3$$

$$= (3x - 1)^2(x^2 + 5)i(3x - 1) \times 4x + (x^2 + 5) \times 91$$

$$=(3x-1)^2(x^2+5)(12x^2-4x+9x^2+45)$$

$$=(3x-1)^2(x^2+5)(21x^2-4x+45)$$

Exercise 17.2 (Answers on page 641.)

 Differentiate each of the following products wrt x. Leave the answers in simplified factor form

(b) r²(r² - 1) (c) $(r^2 + 1)(r^3 - 1)$ (a) $x(x-2)^2$ (d) $(x + 1)^2(x - 2)^3$ (e) $x^5(1-2x)^2$ (f) $(1-x)^2(3-x)^3$ (g) $x^2(x^2-x-1)^3$ (h) $x^2(x^2-3)^3$ (i) $(3x-2)^2(2x^2-1)$ (j) $(x^2 \pm 1)^2(2x - 1)^3$ (k) $\sqrt{x}(x^3-1)^2$ (1) $x(\sqrt{x}-1)^2$ (m) $2r(1-2r)^3$ (n) $\sqrt{x-1}(x+1)^4$ (a) $(x^2 - x - 2)(x + 1)^3$ (p) $(3x-1)^2(2x+3)^3$

2 Find the equation of the tangent to the curve $y = (x + 1)(x - 2)^3$ at the point where x = 1.

(b)
$$u = x^2 + 1$$
, $v = x^2 - x - 1$, $\frac{dv}{dt} = 2x$, $\frac{dv}{dt} = 2x - 1$
 $\frac{dv}{dt} = \frac{(x^2 - x - 1)(2\alpha - (x^2 + 1)(2x - 1)}{(x^2 - x - 1)^2}$
 $= \frac{2x^2 - 2x^2 - 2x^2 - 2x^2 + x^2 + 1}{(x^2 - x - 1)^2} = \frac{-x^2 - 4x + 1}{(x^2 - x - 1)^2}$
(c) $u = x = x(x + 1)^{\frac{3}{2}} \frac{dv}{dt} = \frac{1}{2} \frac{dv}{(x^2 - x - 1)^2}$

(c)
$$u = x$$
, $v = (x + 1)^{\frac{1}{2}}$, $\frac{du}{dx} = 1$, $\frac{dv}{dx} = \frac{1}{2}(x + 1)^{-\frac{1}{2}}$

$$\frac{dy}{dx} = \frac{(x+1)^{\frac{1}{2}}(1) - x^{\frac{1}{2}}(x+1)^{\frac{1}{2}}}{((x+1)^{\frac{1}{2}})^{\frac{1}{2}}} = \frac{(x+1)^{\frac{1}{2}} - \frac{x}{2}(x+1)^{-\frac{1}{2}}}{x+1}$$

To simplify this, multiply the numerator and denominator by $2(x + 1)^{\frac{1}{2}}$.

$$\frac{dy}{dx} = \frac{2(x+1)-x}{2(x+1)(x+1)^{\frac{1}{2}}} = \frac{x+2}{2(x+1)^{\frac{3}{2}}}$$

Example 11

If
$$y = \frac{x}{3x+2}$$
, show that $\frac{dy}{dx} = \frac{2}{(3x+2)^2}$.

Hence or otherwise find $\int_{1}^{3} \frac{dx}{(3x+2)^{2}}$.

$$\frac{dy}{dx} = \frac{(3x+2)(1)-x(3)}{(3x+2)^2} = \frac{2}{(3x+2)^2}$$

Hence means that we should use the above result and notice that

$$\int_{1}^{3} \frac{dx}{(3x+2)^{2}} = \frac{1}{2} \int_{1}^{3} \frac{2}{(3x+2)^{2}} dx$$

$$= 1 \left[-x \right]^{3}$$

$$= \frac{1}{2} \left[\frac{x}{3x+2} \right]_1^3 \quad (i)$$

$$= \frac{1}{2} \left(\frac{3}{11}\right) - \frac{1}{2} \left(\frac{1}{3}\right) = \frac{2}{35}$$
Otherwise means that another method can be used. We must notice that it is the integral of a linear function.

$$\int_{1}^{3} (3x + 2)^{-2} dx = \left[\frac{(3x + 2)^{-1}}{-3} \right]_{1}^{3}$$

$$= \left[\frac{-1}{3(3x + 2)} \right]_{1}^{3} \quad (ii)$$

$$=\left(-\frac{1}{33}\right)-\left(-\frac{1}{15}\right)=\frac{2}{55}$$

Note: The two integrals (i) and (ii) look different but they only differ by a constant.

$$\frac{1}{2}\left(\frac{x}{3x+2}\right) = \frac{1}{6}\left(\frac{3x+2-2}{3x+2}\right) = \frac{1}{6}\left(1 - \frac{2}{3x+2}\right) = \frac{1}{6} - \frac{-1}{3(3x+2)}.$$

The constant \(\frac{1}{6} \) disappears when the limits are substituted.

Exercise 17.3 (Answers on page 641.)

1 Differentiate wr. x, simplifying where possible:
(a)
$$\frac{s}{s+2}$$
 (b) $\frac{s}{s+2}$ (c) $\frac{s-2}{2s+1}$
(d) $\frac{3s-2}{s^2+1}$ (e) $\frac{s^2+2}{s^2-1}$ (f) $\frac{s^2+s-1}{1-s}$
(g) $\frac{s}{\sqrt{3s-2}}$ (h) $\frac{s}{\sqrt{2s+1}}$ (j) $\frac{s^2}{\sqrt{2s+1}}$
(i) $\frac{s}{\sqrt{2s-1}}$ (i) $\frac{s}{\sqrt{2s-1}}$

(m) $\frac{3x-4}{3x-4}$ (n) $\frac{x+1}{x+1}$

2 If $y = \frac{x}{x+1}$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Hence show that $(1+x)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$.

3 If $y = \frac{x}{2x-1}$, show that $\frac{dy}{dx} = \frac{-1}{(2x-1)^2}$. Hence or otherwise find $\int_{1}^{3} \frac{dx}{(2x-1)^2}$.

4 Given that $y = \frac{x}{2x+3}$, find $\frac{dy}{dx}$.

Hence or otherwise evaluate
$$\int_{1}^{2} \frac{dx}{(2x+3)^2}$$
.

5 If
$$y = \sqrt{\frac{x}{x+1}}$$
, find $\frac{dy}{dx}$. (Take $y = \frac{\sqrt{x}}{\sqrt{x+1}}$.)

Hence evaluate \(\frac{dx}{\frac{1}{2}(x+1)^{\frac{3}{2}}} \).

6 Differentiate $\frac{x}{\sqrt{x^2+3}}$ wrt x. Hence find $\int_{-1}^{1} \frac{dx}{(x^2+3)^{\frac{3}{2}}}$.

7 Find
$$\frac{dy}{dx}$$
 if $y = \sqrt{\frac{x+1}{x-1}}$.

8 Find the values of x which give stationary points on the curve $y = \frac{x^2}{x^2}$.

9 (a) Given that $y = \frac{x + a}{2}$ and that $\frac{dy}{dx} = -\frac{1}{2a}$ when x = 3, find the value of a. (b) If $\int_{-\infty}^{1} \frac{1}{(2-x)^{k/2}} dx = \frac{1}{3}$, where k is a constant, find the value of k.

10 If
$$y = \frac{x}{\sqrt{x^2 + x + 1}}$$
, find $\frac{dy}{dx}$.

Hence find the x-coordinate of the stationary point on the curve.

Differentiation of Implicit Functions

All the functions we have met so far have been in the form y = f(x) i.e. they have been explicit functions. y has been given directly in terms of x. A function may however be stated implicitly, as for example $x^3 + y^3 = 3xy$, where it would be difficult to make y the subject. Using the product rule we can differentiate such functions and then find $\frac{dy}{dx}$.

Using a calculator, the following values of sin x and x were obtained:

x (radians)	sin x
0.2	0.198669
0.1	0.09983
0.05	0.049979
0.01	0.0099998
0.001	0.0000000

This shows that when x is small, $\sin x \approx x$. It would suggest that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Here is a simple proof of this.

In Fig. 17.2, OAB is a sector of a circle centre O, radius r and angle x radians. AC is perpendicular to OA. Then AC = r tan x.

Fig. 17.2

Area of $\triangle AOB$ < area of sector AOB < area of $\triangle AOC$,

i.e.
$$\frac{1}{2}r^2 \sin x < \frac{1}{2}r^2x < \frac{1}{2}r^2 \tan x$$

Hence $\sin x < x < \tan x$.

Dividing by
$$\sin x$$
, $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$.

Now as
$$x \to 0$$
, $\cos x \to 1$ and $\frac{1}{\cos x} \to 1$.

The left hand term is fixed at 1 and the right hand term \rightarrow 1. Hence the middle term must \rightarrow 1. Therefore $\lim_{x\to 0} \frac{x}{\sin x} = 1$.

In a more convenient form,

$$\lim_{s\to 0} \frac{\sin s}{s} \approx 1$$

Note: For this result to be valid, x must be in radians.

Differentiate (a) $\sin 3x$, (b) $\sin(ax + b)$, (c) $\sin^2 x$, (d) $\sin^3(3x - 2)$.

(a) y = sin 3x

We treat this as a composite function, i.e. $y = \sin u$ where u = 3x.

 $\frac{dy}{du} = \cos u$ and $\frac{du}{dx} = 3$.

Then
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \cos u \times 3 = 3 \cos 3x$$
.

Note that the function sin is differentiated first to give cos, then the angle 3x is differentiated to give 3.

(b) $y = \sin(ax + b)$

Taking $y = \sin u$ where u = ax + b,

 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \cos u \times a = a \cos(ax + b)$

Note this result for future use:

 $\frac{d}{dx}\sin(ax+b) = a\cos(ax+b)$

First differentiate the function, then the angle.

(c) v = sin² x

Treat this as a power of the function $\sin x$.

Take $y = u^2$ where $u = \sin u$.

First differentiate as a power, i.e. $\frac{dy}{du}$, then differentiate the function sin, i.e. $\frac{du}{dx}$.

 $\frac{dy}{dx} = 2 \sin x \times \cos x = 2 \sin x \cos x$

differentiate differentiate $\sin^2 x$ to get $\sin x$ to get $2 \sin x$ $\cos x$

(The result could also be written as $\sin 2x$).

(d) $y = \sin^3 (3x - 2)$

First differentiate as a power, then differentiate sin, then the angle.

 $\frac{dy}{dx} = 3 \sin^2(3x - 2) \times \cos(3x - 2) \times 3$ $\frac{differentiate}{to get 3 \sin^2} \frac{differentiate}{to get \cos} \frac{differentiate}{3x - 2 to get 3}$

The sequence is $\sin^{2}(3x-2)$

Hence $\frac{dy}{dx} = 9 \sin^2(3x - 2) \cos(3x - 2)$

Differentiate sin xo wrt x.

We must first convert the angle to radians.

$$x^0 = \frac{\pi x}{180}$$
 radians

If
$$y = \sin \frac{\pi x}{180}$$
, then

$$\frac{dy}{dx} = \cos \frac{\pi x}{180} \times \frac{\pi}{180} \text{ or } \frac{\pi}{180} \cos x^{\circ}.$$

Note that the result is NOT $\cos x^{\circ}$. All formulae in calculus for trigonometrical functions are only true for radian measure. Angles in degrees must be converted to radians.

Example 17

Differentiate (a) $x \sin x$, (b) $\sqrt{1 - \sin x}$ wrt x.

(a) This is a product of x and sin x.

If $y = x \sin x$, then $\frac{dy}{dx} = x \cos x + \sin x$.

(b) If
$$y = (1 - \sin x)^{\frac{1}{2}}$$
, $\frac{dy}{dx} = \frac{1}{2}(1 - \sin x)^{-\frac{1}{2}} \times (-\cos x)$

$$= \frac{-\cos x}{2\sqrt{1-\sin x}}$$

Example 18

Find the values of x for $0 < x < \pi$ which satisfy the equation $\frac{d}{dx}(x - \sin 2x) = \sin^2 x$.

$$\frac{d}{dx}(x - \sin 2x) = 1 - 2\cos 2x = 1 - 2(1 - 2\sin^2 x) = 4\sin^2 x - 1$$

Hence $4 \sin^2 x - 1 = \sin^2 x$ or $\sin x = \pm \frac{1}{\sqrt{3}}$.

Solving this equation, x = 0.62 or 2.52 radians ($x < \pi = 3.14$).

Differentiate wrt x (a) x tan 2x, (b) sin x tan x.

(a) If
$$y = x \tan 2x$$
, $\frac{dy}{dx} = x \sec^2 2x \times 2 + \tan 2x$
= $2x \sec^2 2x + \tan 2x$.

(b) If
$$y = \sin x \tan x$$
, $\frac{dy}{dx} = \sin x \sec^2 x + \tan x \cos x$
 $= \sin x \sec^2 x + \sin x$
 $= (\sin x)(\sec^2 x + 1)$

Exercise 17.6 (Answers on page 642.)

```
    Differentiate wrt x:
```

2 Differentiate wrt x:

(a)
$$\sin 3x$$
 (b) $\sin \frac{x}{2}$
(d) $\tan 3x$ (e) $\csc x$
(g) $x^2 \sin 2x$ (h) $\cos(2x^2 - 1)$

(j)
$$\tan \frac{x}{2}$$
 (k) $x \sin x + \cos x$
(m) $\cos^3 2x$ (n) $x \cos x - \sin 2$

(m)
$$\cos^3 2x$$
 (n) $x \cos x - \sin^2 2x$ (q) $\cos^3 (1 - 3x^2)$

(n)
$$x \cos x - \sin 2x$$

(a) $\cos^3(1 - 3x^2)$

$$s x - \sin 2x$$

$$(1 - 3x^2)$$

$$x \cos x - \sin 2x$$

$$\cos^3(1 - 3x^2)$$

(a)
$$\cos 3x$$
 (b) $\sin \frac{x}{3}$ (d) $\sin^3 2x$ (e) $\tan(\frac{x}{3}-2)$

(d)
$$\sin^3 2x$$
 (e) $\tan(\frac{x}{3} - 2x)$
(g) $\frac{1 - \sin x}{1 + \sin x}$ (h) $x^2 \tan \frac{x}{2}$

(e)
$$\tan(\frac{\pi}{3} - 2)$$

(h) $x^2 \tan \frac{\pi}{2}$

h)
$$x^2 \tan \frac{x}{2}$$

(c)
$$\cos(2x^2 - 1)$$

(f) $\sin \frac{x}{2} \cos 2x$
(i) $\cos x^2$

(c) cos x

(f) x sin x (i) $\sin\left(\frac{\pi}{2} - x\right)$

(o) sin 3x cos 2x

(r) √tan 2x

(j)
$$x(\cos 2x - \sin x)$$

3 If $y = \sin 2x$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$, and show that $\frac{d^2y}{dx^2} + 4y = 0$.

$$\frac{d^2y}{dx^2}$$
, and show that

4 If
$$y = x \sin 2x$$
, find the value of $\frac{dy}{dx}$ when $x = \frac{\pi}{2}$.

5 Given $y = A \cos 2x + B \sin 2x$, where A and B are constants, show that $\frac{d^2y}{dx^2} + 4y = 0$. If also y = 3 when $x = \frac{\pi}{2}$ and $\frac{dy}{dx} = 4$ when x = 0, find the value of A and of B.

6 If $y = \cos \theta + 2 \sin \theta$, find the values of θ (0 < θ < 2π) for which $\frac{dy}{d\theta} = 0$.

7 Find $\frac{dy}{dx}$ if $y = (\sin x + \cos 2x)^2$.

8 Solve the equation $\frac{d}{dx}(x + \sin 2x) = 2$ for $0 < x < \pi$.

9 Differentiate $\frac{\sin x}{1 + \cos x}$ wrt x and hence find $\int_{0}^{\frac{x}{2}} \frac{dx}{1 + \cos x}$.

10 (a) Show that if $y = 2 \sin x - \cos x$, then $\frac{dy}{dx} = 0$ when $\tan x = -2$. Hence find the values of x (0 < x < 2π) where y has stationary values.

(b) Find the value of x ($0 < x < 2\pi$) for which $y = \frac{3 \cos x}{2 - \sin x}$ is stationary. Hence find the maximum and minimum values of y.

11 Find the equations of the tangents to the curve $y = \sin x$ where x = 0 and $x = \pi$.

12 Find the equation of the tangent to the curve $y = \cos x$ where $x = \frac{\pi}{2}$.

Integration of Trigonometric Functions

If
$$y = \sin(ax + b)$$
, then $\frac{dy}{dx} = a\cos(ax + b)$.

Therefore cost

$$\int \cos(ax+b) \ dx = \frac{1}{a} \sin(ax+b) + c$$

If $y = \cos(ax + b)$, then $\frac{dy}{dx} = -a \sin(ax + b)$.

Therefore
$$\int \sin(ax+b) dx = -\frac{1}{a} \cos(ax+b) + c$$

If $y = \tan(ax + b)$, then $\frac{dy}{dx} = a \sec^2(ax + b)$.

Therefore
$$\int \sec^2(ax+b) \ dx = \frac{1}{a} \tan(ax+b) + c$$

For all these results, x must be in radians

Example 24

Integrate (a) $\int \sin 3x \, dx$, (b) $\int \cos \frac{x}{2} \, dx$.

(a)
$$\int \sin 3x \, dx = \frac{-\cos 3x}{3} + c = -\frac{1}{3} \cos 3x + c$$

(b)
$$\int \cos \frac{x}{2} dx = \frac{\sin \frac{x}{2}}{\frac{1}{2}} + c = 2 \sin \frac{x}{2} + c$$

Example 25

Find the area of the shaded region in Fig.17.4 between the part OA of the curve $y = \sin x$ and the line OA, where O is the origin and A is the point $(\frac{\pi}{2}, 1)$.

Fig. 17.4

The shaded area is the area under the curve minus the area of $\triangle OBA$ where AB is perpendicular to x-axis.

Area =
$$\int_0^{\frac{\pi}{2}} \sin x \, dx - \frac{1}{2} \times \frac{\pi}{2} \times 1$$

$$= \left[-\cos x\right]_0^{\frac{\pi}{2}} - \frac{\pi}{4}$$

$$= \left(-\cos\frac{\pi}{2}\right) - \left(-\cos 0\right) - \frac{\pi}{4} = 0 - (-1) - \frac{\pi}{4} = 1 - \frac{\pi}{4} \text{ units}^2$$

Example 26

Find sin2 x dx.

We cannot find $\int \sin^2 x \, dx$ directly as it is not in the form $\sin(ax + b)$. We use the formula $\cos 2x = 1 - 2 \sin^2 x$ to convert it to a suitable form.

Then $\int \sin^2 x \, dx = \int \frac{(1 - \cos 2x)}{2} \, dx$

$$= \int \left(\frac{1}{2} - \frac{\cos 2x}{2} \right) dx = \frac{x}{2} - \frac{\sin 2x}{2 \times 2} + c = \frac{x}{2} - \frac{\sin 2x}{4} + c.$$

The same method is used to find $\int \cos^2 x \, dx$.

Example 27

Sketch the curve $y=1+\cos x$ for $0\le x\le \pi$. This curve is rotated about the x-axis through 2π radians. Find the volume created in terms of π .

Fig. 17.5

Fig. 17.5 shows the curve, which is $y = \cos x$ moved up 1 unit.

The volume
$$= \int_0^x \pi(1 + \cos x)^2 dx$$

 $= \pi \int_0^x (1 + 2\cos x + \cos^2 x) dx$
 $= \pi \int_0^x (1 + 2\cos x + \frac{1 + \cos 2}{2}) dx$
 $= \pi \int_0^x (\frac{1}{2} + 2\cos x + \frac{1}{2}\cos 2x) dx$
 $= \pi \left[\frac{3x}{2} + 2\sin x + \frac{1}{4}\sin 2x\right]_0^x$

Exercise 17.7 (Answers on page 642.)

(a)
$$\sin 2x$$
 (b) $\cos 4x$ (c) $\sin \frac{x}{2}$ (d) $3 \sin 3x$ (e) $\sec^2 3x$ (f) $\cos 2x - \sin x$

(g)
$$\sin x + \cos x$$
 (h) $\cos^2 \frac{x}{2}$ (i) $\cos 5x$

 $=\pi \left(\frac{3\pi}{2} + 2 \sin \pi + \frac{1}{4} \sin 2\pi\right) - \pi(0) = \frac{3\pi^2}{2} \text{ units}^3$

(j)
$$\sin\left(\frac{\pi}{4} - x\right)$$
 (k) $\sec^2\frac{x}{2}$ (l) $\cos 2x - \sin x$

(m) $(\cos x - \sin x)^2$ (n) $2 \sin x + \frac{1}{2} \sin 2x$

2 Evaluate

(a)
$$\int_{0}^{\frac{\pi}{2}} \cos x \, dx$$
 (b) $\int_{0}^{\frac{\pi}{2}} \sin x \, dx$ (c) $\int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx$ (d) $\int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx$

(c)
$$\int_0^x \sin^2 x \, dx$$
 (d) $\int_0^x \sec^2 x \, dx$
(e) $\int_0^{\frac{\pi}{2}} (\sin 2x - \cos x) \, dx$ (f) $\int_0^{\frac{\pi}{2}} (\cos x + \sin x)^2 \, dx$

(e)
$$\int_{0}^{2} (\sin 2x - \cos x) dx$$
 (f) $\int_{0}^{2} (\cos x + \sin x)^{2}$
(g) $\int_{1}^{4} \sin \frac{3x}{2} dx$ (h) $\int_{0}^{4} \sin 3x dx$

(i)
$$\int_0^{\pi} \cos \frac{x}{2} dx$$
 (j) $\int_0^{\pi} \cos 2x dx$

(k)
$$\int_{1}^{\frac{6\pi}{12}} \cos^2 x \, dx$$

3 If
$$\frac{dy}{d\theta} = \frac{1}{\theta^2} + \frac{1}{2} \cos 2\theta$$
, find y if $y = 1$ when $\theta = \frac{\pi}{2}$.

- 4 Find (a) the area of the region enclosed by the curve $y = \sin x$ and the x-axis from x = 0 to $x = \pi$ and (b) the volume created if this region is rotated about the x-axis.
- 5 Differentiate $\frac{1}{1 + \cos x}$ wrt x. Hence find the area of the region under the curve $y = \frac{\sin x}{(1 + \cos x)^2}$ between x = 0 and $x = \frac{\pi}{2}$.

- 6 The region bounded by the x-axis and the part of the curve y=2 sin x between x=0 and $x=\pi$ is rotated about the x-axis through 360°. Find the volume of the solid generated.
- 7 Sketch the curves $y = \cos x$ and $y = \sin x$ for $0 \le x \le \frac{\pi}{2}$.

Find (a) the value of x where the curves intersect, (b) the area of the region bounded by the two curves and the x-axis. (c) If this region is rotated about the x-axis through 360°, find the volume of the solid created.

- 8 Find the area of the region enclosed by the x-axis, the y-axis, the curve $y = \cos x$ and the line $x = \frac{\pi}{6}$. If this region is rotated about the x-axis through 360°, find the volume created.
- 9 Using an identity for cos 4x, find ∫ cos² 2x dx.
- 10 Sketch the curves $y = \cos x$ and $y = \sin 2x$ for $0 \le x \le \frac{\pi}{2}$. Find

 (a) the value of x where the curves intersect (apart from $x = \frac{\pi}{2}$) and

 (b) the area of the region enclosed by the two curves and the x-axis.
- 11 (a) Show that $\frac{1-\cos 2x}{1+\cos 2x} \equiv \sec^2 x 1$. (b) Hence find the value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1-\cos 2x}{1+\cos 2x} dx$
- 12 By writing 3x as 2x + x, show that $\cos 3x = 4 \cos^3 x 3 \cos x$. Hence evaluate $\int_{0}^{\pi} \cos^3 x \, dx$.

SUMMARY

- $\int (ax+b)^e dx = \frac{(ax+b)^{n+1}}{(n+1)a} + c \ (n \neq -1)$
- Product rule: If y = uv, $\frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}$
- Quotient rule: If $y = \frac{u}{v}$, $\frac{dy}{dx} = \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$
- For x in radians, a and b constants:
 - $\frac{d}{dx} \sin(ax + b) = a\cos(ax + b), \int \cos(ax + b) dx = \frac{1}{a} \sin(ax + b) + c$
 - $\frac{d}{dx}\cos(ax+b) = -a\sin(ax+b), \int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + c$ $\frac{d}{dx}\tan(ax+b) = a\sec^2(ax+b), \int \sec^2(ax+b) dx = \frac{1}{a}\tan(ax+b) + c$
- To integrate sin² x or cos² x, use the identity for cos 2x.

- 14 If $r = a\sqrt{1 \cos \theta}$, show that $\frac{dr}{d\theta} = \frac{a}{\sqrt{2}} \cos \frac{\theta}{2}$.
- 15 (a) Given that y = sin² x cos 2x, find the values of x (0 ≤ x ≤ π) for which dy/dx = 0.
 (b) Find the values of x (0 ≤ x ≤ 2π) for which y = (1 + sin x)/(sin x + cos x) is stationary. State the maximum and minimum values of y.
- 16 If $y = \sin 2\theta$, find the approximate change in y when θ is increased from $\frac{\pi}{6}$ to $\frac{\pi}{6} + 0.01$.
- 17 Show that the function $\frac{x}{x^2-1}$ is always decreasing for x > 1.
- 18 Find $\frac{dy}{dx}$ in terms of x and y if $2xy^2 + y + 2x = 8$. Hence find the gradient of the curve at the points where x = 1.
- 19 If $y = a \sin 2x$, where a is a constant, satisfies the equation $\frac{d^2y}{dx^2} + 8y = 4 \sin 2x$, find the value of a.
- **20** Given that $r^2(1 + \cos \theta) = k$, where k is a constant, show that $\frac{dr}{d\theta} = \frac{r}{2} \tan \frac{\theta}{2}$.
- В
- 21 Solve the equation $\int_{x}^{2x} \sin \frac{t}{2} dt = 0$ for $0 \le x \le 2\pi$.
- 22 Find $\frac{dy}{dx}$ for each of the functions xy = a and $y = \sqrt{k^2 + x^2}$ where a and k are constants. Hence show that the tangents at the point of intersection of the curves are perpendicular.
 - 23 A particle moves in a straight line and its distance s from a fixed point O of the line at time t is given by s = 4 sin 2t.
 - (a) Show that its velocity v and its acceleration a at time t are given by $v = 2\sqrt{16 s^2}$ and a = -4s.
 - (b) Find the greatest distance from O reached by the particle.
 - 24 At a certain port the height h metres of the tide above the low water level is given by h = 2(1 + cos θ) where θ = π/450 and t is the time in minutes after high tide.
 - (a) What length of time is there between high and low tide?
 - (a) What length of time is there between high and low tide?(b) At what rate is the tide falling, in metres per minute, 75 minutes after high tide?
 - (b) At what rate is the tide falling, in metres per minute, 75 minutes after high tide?
 (c) A bridge is 10 metres above the low water level. A boat can only sail under the bridge when the distance between the water and the bridge is not less than 7 metres. How long after high tide will it be before the boat can sail under the
- bridge? 25 (a) Differentiate $\cot \theta$ wrt θ .
- (b) A cone has a base radius r and a semi-vertical angle θ. Show that its volume V = ¹/₃ πr³ cot θ.
 - (c) r is fixed but θ is measured as 45° with an error of 4%. Find the percentage error in the calculated value of V.