Calculations in Chemistry

- To calculate the number of moles in a solid we use the following Mole Triangle

$\mathrm{g}=$ Mass in Grams
$\mathrm{n}=$ Number of moles
gfm=gram formula mass

To calculate the number of moles in a solution we use the following Mole Triangle

$\mathrm{n}=$ number of moles
$\mathrm{c}=$ concentatration (moles/litre)
$\mathrm{v}=$ volume in litres

Examples using the Mole Triangle

- Calculate the no. of moles present in 0.4 g of Na OH

From previous slide : If we cover up the entity we require we see that

$$
\mathrm{n}=\mathrm{g} / \mathrm{gfm} \quad \mathrm{gfm} \text { of } \mathrm{NaOH}=23+16+1=40 \mathrm{~g}
$$ therefore $\mathrm{n}=0.4 / 40=\mathbf{0 . 0 1 m o l e s}$

Calculate the mass of 0.05 moles of $\mathbf{M g}(\mathrm{Cl})_{2}$

Again from previous slide we see that if we cover up the letter we want that we get

$$
\mathrm{g}=\mathrm{n} \times \mathrm{gfm} \quad \mathrm{gfm}=24+2(35.5)=95 \mathrm{~g}
$$

therefore $0.05 \times 95=\mathbf{4 . 7 5 g}$

Calculations contd.

- Calculate the no. of moles present in $50 \mathrm{~cm}^{3}$ of 0.05 molar HCI .
From previous triangle we that if we cover the letter we want that
$\mathrm{n}=\mathrm{C} \times \mathrm{V} / 1000$ therefore $\mathrm{n}=0.05 \times 50 / 1000=\underline{\mathbf{0 . 0 0 0 0 5} \text { moles }}$

Calculate the concentration if we have 0.1 moles dissolved in $100 \mathrm{~cm}^{3}$ of water
From previous triangle we see that

$$
\mathrm{c}=\mathrm{n} / \mathrm{v} \text { in litres }
$$

$$
C=0.1 / 100_{1000}=\mathbf{0 . 0 1} \text { moles } / \text { litre }
$$

Empirical or Simplest formula

Example: A sample of a substance was found to contain 0.12 g of Magnesium and 0.19 g of Fluorine. Find the simplest Formula.

- Rules
- 1. Write down all the symbols present.
$\mathbf{M g}$ and \mathbf{F}
$\mathrm{n}=\mathrm{g} / \mathrm{gfm}$
 moles of each element \Longrightarrow 0.12/24 = 0.19/19 = present.
- 3. Compare ratios(get the smallest number of moles and divide it into
 all the others.
$\underline{0.005 m o l e s} \quad \underline{0.01 m o l e s}$
0.005 : 0.01

1 : 2

- 4.Write down the formula.

$\mathbf{M g}(\mathbf{F})_{2}$

Neutralisation Calculations

- One way of Neutralising an Acid is to add an Alkali(for other methods see reactions of acids section).ie.
Acid + Alkali

Salt + water

To do neutralisation calculations we use the following formula.

acid
alkali
$\mathbf{H}^{+}=$no. of \mathbf{H}^{+}ions in acid $\quad C_{A}=$ Concentration of acid ions in alkali $\mathrm{HCl}=1$
$\mathrm{C}_{\mathrm{B}}=$ Concentration of alkali
$\mathrm{H}_{2} \mathrm{SO}_{4}=2$
$\mathrm{V}_{\mathrm{A}}=$ volume of acid
$\mathrm{H}_{3} \mathrm{PO}_{4}=3$
$\mathbf{V}_{\mathrm{B}}=$ Volume of alkali
$\mathrm{NaOH}=1$
$\mathrm{Ba}(\mathrm{OH})_{2}=2$
$\mathrm{Al}(\mathrm{OH})_{3}=3$

Neutralisation Calculations contd.

- Example: What volume of $\mathbf{0 . 1} \mathbf{M ~ H C l}$ is required to neutralise $100 \mathrm{~cm}^{3}$ of 0.5 M NaOH .

$$
\mathbf{H}^{+} \times \mathbf{C}_{\mathbf{A}} \times \mathbf{V}_{\mathbf{A}}=\mathbf{O H}^{-} \times \mathbf{C}_{\mathbf{B}} \times \mathbf{V}_{\mathbf{B}}
$$

We require to find

$$
\begin{array}{lr}
1 \times 0.1 \times V_{A}=1 \times 0.5 \times 100 \\
V_{A}=50 / 0.1 & =500 \mathrm{cm3}
\end{array}
$$

Example: What concentration of $50 \mathrm{~cm}^{\mathbf{3}} \mathbf{K O H}$ is used to neutralise $100 \mathrm{~cm}^{3}$ of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& \mathbf{H}^{+} \times \mathbf{C}_{\mathbf{A}} \times \mathbf{V}_{\mathbf{A}}=\mathbf{O H}^{-}, \mathbf{C}_{\mathbf{B}} \times \mathbf{V}_{\mathbf{B}} \\
& \text { to find }
\end{aligned}
$$

We require to find

$$
\begin{aligned}
2 \times 0.05 \times 100=1 & \times C_{B} \times 50 \\
C_{B}=10 / 50 & =0.2 M
\end{aligned}
$$

Calculations from Equations

- Example: What mass of Hydrogen gas is produced when 0.12 g of Magnesium is added to excess Hydrochloric Acid.

We first require to write down the balanced equation

$$
\mathbf{M g}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightleftharpoons \mathbf{M g}(\mathrm{Cl})_{2_{(\mathrm{aq})}}+\mathbf{H}_{2(\mathrm{~g})}
$$

To balance the equation we add a 2 in front of the HCl
From This we can see that:
1M

$\mathbf{1 M}+\mathbf{1 M}$
24g
1g

therefore
0.12 g
$0.08 \times 0.12=\underline{0.0096 g \text { of } \mathrm{H}_{2}}$

