

An equilateral 16-sided figure $A P A^{\prime} Q B$ \qquad is formed when the square $A B C D$ is rotated 45° clockwise about its centre to position $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
$A B=12 \mathrm{~cm}$ and $A P=x \mathrm{~cm}$.
(a) (i) Use triangle $P A^{\prime} Q$ to explain why $2 x^{2}=(12-2 x)^{2}$.
(ii) Show that this simplifies to $x^{2}-24 x+72=0$.
(iii) Solve $x^{2}-24 x+72=0$. Give your answers correct to 2 decimal places.
(b) (i) Calculate the perimeter of the 16-sided figure.
(ii) Calculate the area of the 16 -sided figure.

Maria walks 10 kilometres to a waterfall at an average speed of x kilometres per hour.
(a) Write down, in terms of x, the time taken in hours.
(b) Maria returns from the waterfall but this time she walks the 10 kilometres at an average speed of $(x+1)$ kilometres per hour. The time of the return journey is 30 minutes less than the time of the first journey.
Write down an equation in x and show that it simplifies to $x^{2}+x-20=0$.
(c) Solve the equation $x^{2}+x-20=0$.
(d) Find the time Maria takes to walk to the waterfall.

A rectangular-based open box has external dimensions of $2 x \mathrm{~cm},(x+4) \mathrm{cm}$ and $(x+1) \mathrm{cm}$.
(a) (i) Write down the volume of a cuboid with these dimensions.
(ii) Expand and simplify your answer.
(b) The box is made from wood 1 cm thick.
(i) Write down the internal dimensions of the box in terms of x.
(ii) Find the volume of the inside of the box and show that the volume of the wood is $8 x^{2}+12 x$ cubic centimetres.
(c) The volume of the wood is $1980 \mathrm{~cm}^{3}$.
(i) Show that $2 x^{2}+3 x-495=0$ and solve this equation.
(ii) Write down the external dimensions of the box.

The length, y, of a solid is inversely proportional to the square of its height, x.
(a) Write down a general equation for x and y.

Show that when $x=5$ and $y=4.8$ the equation becomes $x^{2} y=120$.
(b) Find y when $x=2$.
(c) Find x when $y=10$.
(d) Find x when $y=x$.
(e) Describe exactly what happens to y when x is doubled.
(f) Describe exactly what happens to x when y is decreased by 36%.
(g) Make x the subject of the formula $x^{2} y=120$.

A packet of sweets contains chocolates and toffees.
(a) There are x chocolates which have a total mass of 105 grams.

Write down, in terms of x, the mean mass of a chocolate.
(b) There are $x+4$ toffees which have a total mass of 105 grams.

Write down, in terms of x, the mean mass of a toffee.
(c) The difference between the two mean masses in parts (a) and (b) is 0.8 grams.

Write down an equation in x and show that it simplifies to $x^{2}+4 x-525=0$.
(d) (i) Factorise $x^{2}+4 x-525$.
(ii) Write down the solutions of $x^{2}+4 x-525=0$.
(e) Write down the total number of sweets in the packet.
(f) Find the mean mass of a sweet in the packet.

2 (a) (i) Factorise $x^{2}-x-20$.
(ii) Solve the equation $x^{2}-x-20=0$.
(b) Solve the equation $3 x^{2}-2 x-2=0$.

Show all your working and give your answers correct to 2 decimal places.
(c)

$$
y=m^{2}-4 n^{2}
$$

(i) Factorise $m^{2}-4 n^{2}$.
(ii) Find the value of y when $m=4.4$ and $n=2.8$.
(iii) $m=2 x+3$ and $n=x-1$.

Find y in terms of x, in its simplest form.
(iv) Make n the subject of the formula $y=m^{2}-4 n^{2}$.
(d) (i) $m^{4}-16 n^{4}$ can be written as $\left(m^{2}-k n^{2}\right)\left(m^{2}+k n^{2}\right)$.

Write down the value of k.
(ii) Factorise completely $m^{4} n-16 n^{5}$.

6 (a)

In triangle $A B C$, the line $B D$ is perpendicular to $A C$.
$A D=(x+6) \mathrm{cm}, D C=(x+2) \mathrm{cm}$ and the height $B D=(x+1) \mathrm{cm}$.
The area of triangle $A B C$ is $40 \mathrm{~cm}^{2}$.
(i) Show that $x^{2}+5 x-36=0$.

Answer (a)(i)
(ii) Solve the equation $x^{2}+5 x-36=0$.

$$
\begin{equation*}
\text { Answer(a)(ii) } x= \tag{2}
\end{equation*}
$$

\qquad

$$
\text { or } x=
$$

\qquad
(iii) Calculate the length of $B C$.
(b) Amira takes 9 hours 25 minutes to complete a long walk.
(i) Show that the time of 9 hours 25 minutes can be written as $\frac{113}{12}$ hours.

```
Answer (b)(i)
```

(ii) She walks $(3 y+2)$ kilometres at $3 \mathrm{~km} / \mathrm{h}$ and then a further $(y+4)$ kilometres at $2 \mathrm{~km} / \mathrm{h}$. Show that the total time taken is $\frac{9 y+16}{6}$ hours. Answer(b)(ii)
(iii) Solve the equation $\frac{9 y+16}{6}=\frac{113}{12}$.

$$
\text { Answer(b)(iii) } y=
$$

(iv) Calculate Amira's average speed, in kilometres per hour, for the whole walk.
\qquad

8 (a) y is 5 less than the square of the sum of p and q.
Write down a formula for y in terms of p and q.

$$
\text { Answer(a) } y=
$$

(b) The cost of a magazine is $\$ x$ and the cost of a newspaper is $\$(x-3)$.

The total cost of 6 magazines and 9 newspapers is $\$ 51$.
Write down and solve an equation in x to find the cost of a magazine.
(c) Bus tickets cost $\$ 3$ for an adult and $\$ 2$ for a child.

There are a adults and c children on a bus.
The total number of people on the bus is 52 .
The total cost of the 52 tickets is $\$ 139$.
Find the number of adults and the number of children on the bus.

9 (a) The cost of a bottle of water is $\$ w$.
The cost of a bottle of juice is $\$ j$.
The total cost of 8 bottles of water and 2 bottles of juice is $\$ 12$.
The total cost of 12 bottles of water and 18 bottles of juice is $\$ 45$.
Find the cost of a bottle of water and the cost of a bottle of juice.

Answer(a) Cost of a bottle of water $=\$$
Cost of a bottle of juice $=\$$
(b) Roshni cycles 2 kilometres at $y \mathrm{~km} / \mathrm{h}$ and then runs 4 kilometres at $(y-4) \mathrm{km} / \mathrm{h}$. The whole journey takes 40 minutes.
(i) Write an equation in y and show that it simplifies to

$$
y^{2}-13 y+12=0
$$ Answer(b)(i)

(ii) Factorise $y^{2}-13 y+12$.

Answer(b)(ii)
[2]
(iii) Solve the equation $y^{2}-13 y+12=0$.

$$
\begin{equation*}
\text { Answer(b)(iii) } y=\ldots \text { or } y= \tag{1}
\end{equation*}
$$

(iv) Work out Roshni's running speed.
Answer(b)(iv) km/h
(c) Solve the equation

$$
u^{2}-u-4=0 .
$$

Show all your working and give your answers correct to 2 decimal places.

2 (a) The surface area of a person's body, A square metres, is given by the formula

$$
A=\sqrt{\frac{h m}{3600}}
$$

where h is the height in centimetres and m is the mass in kilograms.
(i) Dolores is 167 cm high and has a mass of 70 kg . Calculate the surface area of her body.
(ii) Erik has a mass of 80 kg . Find his height if $A=1.99$.
(iii) Make h the subject of the formula.
(b) Factorise
(i) $x^{2}-16$,
(ii) $x^{2}-16 x$,
(iii) $x^{2}-9 x+8$.
(c) Erik runs a race at an average speed of $x \mathrm{~m} / \mathrm{s}$.

His time is $(3 x-9)$ seconds and the race distance is $\left(2 x^{2}-8\right)$ metres.
(i) Write down an equation in x and show that it simplifies to

$$
\begin{equation*}
x^{2}-9 x+8=0 . \tag{2}
\end{equation*}
$$

(ii) Solve $x^{2}-9 x+8=0$.
(iii) Write down Erik's time and the race distance.

8 (a) (i) The cost of a book is $\$ x$.
Write down an expression in terms of x for the number of these books which are bought for $\$ 40$.
(ii) The cost of each book is increased by $\$ 2$.

The number of books which are bought for $\$ 40$ is now one less than before.
Write down an equation in x and show that it simplifies to $x^{2}+2 x-80=0$.
(iii) Solve the equation $x^{2}+2 x-80=0$.
(iv) Find the original cost of one book.
(b) Magazines cost $\$ m$ each and newspapers cost $\$ n$ each.

One magazine costs $\$ 2.55$ more than one newspaper.
The cost of two magazines is the same as the cost of five newspapers.
(i) Write down two equations in m and n to show this information.
(ii) Find the values of m and n.

A sketch of the graph of the quadratic function $y=p x^{2}+q x+r$ is shown in the diagram.

The graph cuts the x-axis at K and L.
The point M lies on the graph and on the line of symmetry.
(a) When $p=1, \quad q=-2, \quad r=-3$, find
(i) the y-coordinate of the point where $x=4$,
(ii) the coordinates of K and L,
(iii) the coordinates of M.
(b) Describe how the above sketch of the graph would change in each of the following cases.
(i) p is negative.
(ii) $p=1, q=r=0$.
(c) Another quadratic function is $y=a x^{2}+b x+c$.
(i) Its graph passes through the origin.

Write down the value of c.
(ii) The graph also passes through the points $(3,0)$ and $(4,8)$. Find the values of a and b.

(a) When the area of triangle $A B C$ is $48 \mathrm{~cm}^{2}$,
(i) show that $x^{2}+4 x-96=0$,
(ii) solve the equation $x^{2}+4 x-96=0$,
(iii) write down the length of $A B$.
(b) When $\tan y=\frac{1}{6}$, find the value of x.
(c) When the length of $A C$ is 9 cm ,
(i) show that $2 x^{2}+8 x-65=0$,
(ii) solve the equation $2 x^{2}+8 x-65=0$,
(Show your working and give your answers correct to 2 decimal places.)
(iii) calculate the perimeter of triangle $A B C$.

The diagram shows two rectangles $A B C D$ and $P Q R S$.
$A B=(2 x+5) \mathrm{cm}, A D=(x+3) \mathrm{cm}, P Q=(x+4) \mathrm{cm}$ and $P S=x \mathrm{~cm}$.
(a) For one value of x, the area of rectangle $A B C D$ is $59 \mathrm{~cm}^{2}$ more than the area of rectangle $P Q R S$.
(i) Show that $x^{2}+7 x-44=0$.
where n is answer(a) positive integer and $(r)=\frac{n!}{(n-r)!r!}$.
(ii) Factorise $x^{2}+7 x-44$.

> Answer(a)(ii)
(iii) Solve the equation $x^{2}+7 x-44=0$.

$$
\operatorname{Answer}(a)(\mathrm{iii}) x=\ldots \quad \text { or } x=
$$

(iv) Calculate the size of angle $D B A$.
(b) For a different value of x, the rectangles $A B C D$ and $P Q R S$ are similar.
(i) Show that this value of x satisfies the equation $x^{2}-2 x-12=0$. Answer(b)(i)
(ii) Solve the equation $x^{2}-2 x-12=0$, giving your answers correct to 2 decimal places.

$$
\text { Answer(b)(ii) } x=\quad \text { or } x=
$$

(iii) Calculate the perimeter of the rectangle $P Q R S$.

9 (a) Solve the equation $\frac{m-3}{4}+\frac{m+4}{3}=-7$.

$$
\text { Answer(a) } m=
$$

(b) (i) $y=\frac{3}{x-1}-\frac{2}{x+3}$

Find the value of y when $x=5$.

Answer(b)(i)
(ii) Write $\frac{3}{x-1}-\frac{2}{x+3}$ as a single fraction.
(iii) Solve the equation $\frac{3}{x-1}-\frac{2}{x+3}=\frac{1}{x}$.

Answer(b)(iii) $x=$
(c)

$$
p=\frac{t}{q-1}
$$

Find q in terms of p and t.

A farmer makes a rectangular enclosure for his animals.
He uses a wall for one side and a total of 72 metres of fencing for the other three sides.
The enclosure has width x metres and area A square metres.
(a) Show that $A=72 x-2 x^{2}$.

Answer (a)
(b) Factorise completely $72 x-2 x^{2}$.
(c) Complete the table for $A=72 x-2 x^{2}$.

x	0	5	10	15	20	25	30	35
A	0	310	520			550	360	

(d) Draw the graph of $A=72 x-2 x^{2}$ for $0 \leqslant x \leqslant 35$ on the grid opposite.

In the right-angled triangle $A B C, A B=x \mathrm{~cm}, B C=(x+7) \mathrm{cm}$ and $A C=17 \mathrm{~cm}$.
(i) Show that $x^{2}+7 x-120=0$.

Answer(a)(i)
(ii) Factorise $x^{2}+7 x-120$.
(iii) Write down the solutions of $x^{2}+7 x-120=0$.

$$
\text { Answer(a)(iii) } x=
$$

$$
\text { or } x=
$$

(iv) Write down the length of $B C$.
(b)

The rectangle and the square shown in the diagram above have the same area.
(i) Show that $2 x^{2}-15 x-9=0$.

Answer(b)(i)
(ii) Solve the equation $2 x^{2}-15 x-9=0$.

Show all your working and give your answers correct to 2 decimal places.

$$
\text { Answer(b)(ii) } x=
$$

\qquad

$$
\text { or } x=
$$

\qquad
(iii) Calculate the perimeter of the square.

3 (a) Expand the brackets and simplify.

$$
x(x+3)+4 x(x-1)
$$

(d) Solve the equation.

$$
2 x^{2}+5 x+1=0
$$

Show all your working and give your answers correct to 2 decimal places.

> Answer(a)
(b) Simplify $\left(3 x^{3}\right)^{3}$.

> Answer(b)
(c) Factorise the following completely.
(i) $7 x^{7}+14 x^{14}$

> Answer(c)(i)
(ii) $x y+x w+2 a y+2 a w$

> Answer(c)(ii)
(iii) $4 x^{2}-49$

