

An equilateral 16-sided figure APA'QB is formed when the square ABCD is rotated 45° clockwise about its centre to position A'B'C'D'. AB = 12 cm and AP = x cm

AВ	=	12	cm	and	AP	=	x	cm.	

(i)	Use triangle $PA'Q$ to explain why $2x^2 = (12 - 2x)^2$.	[3]
(ii)	Show that this simplifies to $x^2 - 24x + 72 = 0$.	[3]
(iii)	Solve $x^2 - 24x + 72 = 0$. Give your answers correct to 2 decimal places.	[4]
(i)	Calculate the perimeter of the 16-sided figure.	[2]
(ii)	Calculate the area of the 16-sided figure.	[3]
	 (i) (ii) (iii) (i) (ii) 	 (i) Use triangle <i>PA'Q</i> to explain why 2x² = (12 - 2x)². (ii) Show that this simplifies to x² - 24x + 72 = 0. (iii) Solve x² - 24x + 72 = 0. Give your answers correct to 2 decimal places. (i) Calculate the perimeter of the 16-sided figure. (ii) Calculate the area of the 16-sided figure.

Maria walks 10 kilometres to a waterfall at an average speed of *x* kilometres per hour.

(a)	Write down, in terms of <i>x</i> , the time taken in hours.	[1]
(b)	Maria returns from the waterfall but this time she walks the 10 kilometres at an average spece $(x + 1)$ kilometres per hour. The time of the return journey is 30 minutes less than the time of the journey. Write down an equation in x and show that it simplifies to $x^2 + x - 20 = 0$.	d of first [4]
(c)	Solve the equation $x^2 + x - 20 = 0$.	[2]
(d)	Find the time Maria takes to walk to the waterfall.	[2]

A rectangular-based **open** box has **external** dimensions of 2x cm, (x + 4) cm and (x + 1) cm.

(a)	(i)	Write down the volume of a cuboid with these dimensions. [1]		
	(ii)	Expand and simplify your answer.	[1]	
(b)	The	box is made from wood 1 cm thick.		
	(i)	Write down the internal dimensions of the box in terms of <i>x</i> .	[3]	
	(ii)	Find the volume of the inside of the box and show that the volume of the vis $8x^2 + 12x$ cubic centimetres.	wood [3]	

(c) The volume of the wood is 1980 cm^3 .

(i)	Show that	$2x^2 + 3x - 495 = 0$	and solve this equation.	[5]
(ii)	Write down	n the external dimen	sions of the box.	[2]

The length, *y*, of a solid is inversely proportional to the square of its height, *x*.

(a)	Write down a general equation for x and y. Show that when $x = 5$ and $y = 4.8$ the equation becomes $x^2y = 120$.	[2]
(b)	Find <i>y</i> when $x = 2$.	[1]
(c)	Find x when $y = 10$.	[2]
(d)	Find x when $y = x$.	[2]
(e)	Describe exactly what happens to y when x is doubled.	[2]
(f)	Describe exactly what happens to x when y is decreased by 36%.	[2]
(g)	Make x the subject of the formula $x^2 y = 120$.	[2]

A packet of sweets contains chocolates and toffees.		
(a) There are <i>x</i> chocolates which have a total mass of 105 grams.		
Write down, in terms of x , the mean mass of a chocolate.	[1]	
(b) There are $y = 4$ to free which have a total mass of 105 are made		
(b) There are $x + 4$ torrees which have a total mass of 105 grants.	11	
Write down, in terms of x , the mean mass of a toffee.	[1]	
(c) The difference between the two mean masses in parts (a) and (b) is 0.8	3 grams.	
Write down an equation in x and show that it simplifies to $x^2 + 4x - 523$	5 = 0. [4]	
(d) (i) Factorise $x^2 + 4x - 525$.	[2]	
(ii) Write down the solutions of $x^2 + 4x - 525 = 0$.	[1]	
(e) Write down the total number of sweets in the packet.	[1]	
(f) Find the mean mass of a sweet in the packet.	[2]	
(a) (i) Factorise $x^2 - x - 20$.	[2]	
(ii) Solve the equation $x^2 - x - 20 = 0$.	[1]	
(b) Solve the equation $3x^2 - 2x - 2 = 0$. Show all your working and give your answers correct to 2 decimal places.	[4]	
(c) $y = m^2 - 4n^2$.		
(i) Factorise $m^2 - 4n^2$.	[1]	
(ii) Find the value of y when $m = 4.4$ and $n = 2.8$.	[1]	
(iii) $m = 2x + 3$ and $n = x - 1$. Find y in terms of x, in its simplest form.	[2]	
(iv) Make <i>n</i> the subject of the formula $y = m^2 - 4n^2$.	[3]	
(d) (i) $m^4 - 16n^4$ can be written as $(m^2 - kn^2)(m^2 + kn^2)$. Write down the value of k.	[1]	
(ii) Factorise completely $m^4n - 16n^5$.	[2]	

[3]

In triangle *ABC*, the line *BD* is perpendicular to *AC*.

AD = (x + 6) cm, DC = (x + 2) cm and the height BD = (x + 1) cm.

The area of triangle ABC is 40 cm^2 .

(i) Show that $x^2 + 5x - 36 = 0$.

Answer (a)(i)

(ii) Solve the equation $x^2 + 5x - 36 = 0$.

Answer(a)(ii) x = _____ or x = _____ [2]

(iii) Calculate the length of *BC*.

Answer(a)(iii) BC = cm [2]

(b) Amira takes 9 hours 25 minutes to complete a long walk.

(i) Show that the time of 9 hours 25 minutes can be written as $\frac{113}{12}$ hours.

Answer (b)(i)

(ii) She walks (3y + 2) kilometres at 3 km/h and then a further (y + 4) kilometres at 2 km/h. Show that the total time taken is $\frac{9y + 16}{6}$ hours.

Answer(b)(ii)

[2]

[1]

(iii) Solve the equation
$$\frac{9y+16}{6} = \frac{113}{12}$$
.

Answer(b)(iii) y =[2]

(iv) Calculate Amira's average speed, in kilometres per hour, for the whole walk.

Answer(b)(iv) km/h [3]

For Examiner's Use

8 (a) y is 5 less than the square of the sum of p and q.Write down a formula for y in terms of p and q.

Answer(a) y =[2]

- (b) The cost of a magazine is \$x and the cost of a newspaper is \$(x 3).The total cost of 6 magazines and 9 newspapers is \$51.Write down and solve an equation in x to find the cost of a magazine.
- (c) Bus tickets cost \$3 for an adult and \$2 for a child.
 There are *a* adults and *c* children on a bus.
 The total number of people on the bus is 52.
 The total cost of the 52 tickets is \$139.

Find the number of adults and the number of children on the bus.

9 (a) The cost of a bottle of water is w.

The cost of a bottle of juice is \$*j*.

The total cost of 8 bottles of water and 2 bottles of juice is \$12.

The total cost of 12 bottles of water and 18 bottles of juice is \$45.

Find the cost of a bottle of water and the cost of a bottle of juice.

Answer(a) Cost of a bottle of water = \$

Cost of a bottle of juice = [5]

- (b) Roshni cycles 2 kilometres at y km/h and then runs 4 kilometres at (y 4) km/h. The whole journey takes 40 minutes.
 - (i) Write an equation in y and show that it simplifies to $y^2 13y + 12 = 0$.

Answer(b)(i)

	(ii) Factorise $y^2 - 13y + 12$.	For Examiner's Use
	Answer(b)(ii) [2] (iii) Solve the equation $y^2 - 13y + 12 = 0$.	
	Answer(b)(iii) $y =$ or $y =$ [1] (iv) Work out Roshni's running speed.	
	Answer(b)(iv) km/h [1]	
(c)	Solve the equation	
	$u^2-u-4=0.$	

Show all your working and give your answers correct to 2 decimal places.

Answer(c) u = _____ or u = _____ [4]

2 (a) The surface area of a person's body, A square metres, is given by the formula

$$A = \sqrt{\frac{hm}{3600}}$$

where h is the height in centimetres and m is the mass in kilograms.

(i) Dolores is 167 cm high and has a mass of 70 kg. Calculate the surface area of her body.

[1]

(ii) Erik has a mass of 80 kg. Find his height if $A = 1.99$.	[2]
(iii) Make <i>h</i> the subject of the formula.	[3]
Factorise	
(i) $x^2 - 16$,	[1]

- (i) $x^2 16$, [1] (ii) $x^2 - 16x$, [1]
- (ii) $x^2 9x + 8$. [2]
- (iii) $x^2 9x + 8$. [2]
- (c) Erik runs a race at an average speed of x m/s. His time is (3x - 9) seconds and the race distance is $(2x^2 - 8)$ metres.

(b)

- (i) Write down an equation in *x* and show that it simplifies to

 x² 9x + 8 = 0.
 (ii) Solve x² 9x + 8 = 0.
 [2]
- (iii) Write down Erik's time and the race distance. [2]

8 (a) (i) The cost of a book is x. Write down an expression in terms of x for the number of these books which are bought for \$40. [1] (ii) The cost of each book is increased by \$2. The number of books which are bought for \$40 is now one less than before. Write down an equation in x and show that it simplifies to $x^2 + 2x - 80 = 0$. [4] (iii) Solve the equation $x^2 + 2x - 80 = 0$. [2] (iv) Find the original cost of one book. [1] (b) Magazines cost m each and newspapers cost n each. One magazine costs \$2.55 more than one newspaper. The cost of two magazines is the same as the cost of five newspapers. (i) Write down two equations in *m* and *n* to show this information. [2] (ii) Find the values of *m* and *n*. [3]

A sketch of the graph of the quadratic function $y = px^2 + qx + r$ is shown in the diagram.

The graph cuts the *x*-axis at K and L. The point M lies on the graph and on the line of symmetry.

(a) When p = 1, q = -2, r = -3, find

	(i)	the <i>y</i> -coordinate of the point where $x = 4$,		
	(ii)	the coordinates of K and L,	[3]	
	(iii)	the coordinates of <i>M</i> .	[2]	
(b)	Des	cribe how the above sketch of the graph would change in each of the following cases.		
	(i)	<i>p</i> is negative.	[1]	
	(ii)	p = 1, q = r = 0.	[1]	
(c)	And	other quadratic function is $y = ax^2 + bx + c$.		
	(i)	Its graph passes through the origin. Write down the value of c .	[1]	
	(ii)	The graph also passes through the points $(3, 0)$ and $(4, 8)$. Find the values of <i>a</i> and <i>b</i> .	[4]	

(a) When the area of triangle ABC is 48 cm^2 ,

2

(i)	show that $x^2 + 4x - 96 = 0$,	[2]
(ii)	solve the equation $x^2 + 4x - 96 = 0$,	[2]

- [2]
- (iii) write down the length of *AB*. [1]

(b) When
$$\tan y = \frac{1}{6}$$
, find the value of x. [2]

(c) When the length of AC is 9 cm,

(i)	show that	$2x^2 + 8x - 65 = 0,$	[2]
-----	-----------	-----------------------	-----

(ii) solve the equation $2x^2 + 8x - 65 = 0$,

(Show your working and give your answers correct to 2 decimal places.) [4] (iii) calculate the perimeter of triangle *ABC*. [1]

The diagram shows two rectangles ABCD and PQRS.

AB = (2x + 5) cm, AD = (x + 3) cm, PQ = (x + 4) cm and PS = x cm.

- (a) For one value of x, the area of rectangle ABCD is 59 cm^2 more than the area of rectangle PQRS.
 - (i) Show that $x^2 + 7x 44 = 0$.

where *n* is a positive integer and $\binom{r}{r} = \frac{n!}{(n-r)!r!}$.

(ii) Factorise
$$x^2 + 7x - 44$$
. [3]

$$Answer(a)(ii) \qquad [2]$$

For

Examiner's

Use

(iii) Solve the equation $x^2 + 7x - 44 = 0$.

$$Answer(a)(iii) x =$$
 or $x =$ [1]

(iv) Calculate the size of angle *DBA*.

$$Answer(a)(iv) Angle DBA = [2]$$

- (b) For a different value of x, the rectangles *ABCD* and *PQRS* are similar.
 - (i) Show that this value of x satisfies the equation $x^2 2x 12 = 0$. Answer(b)(i)

[3]

(ii) Solve the equation $x^2 - 2x - 12 = 0$, giving your answers correct to 2 decimal places.

 $Answer(b)(ii) x = \qquad \text{or } x = \qquad [4]$

(iii) Calculate the perimeter of the rectangle *PQRS*.

9 (a) Solve the equation
$$\frac{m-3}{4} + \frac{m+4}{3} = -7$$
.
Answer(a) $m =$ [4]
(b) (i) $y = \frac{3}{x-1} - \frac{2}{x+3}$

Find the value of *y* when x = 5.

Answer(b)(i) [1]

(ii) Write
$$\frac{3}{x-1} - \frac{2}{x+3}$$
 as a single fraction.

(iii) Solve the equation
$$\frac{3}{x-1} - \frac{2}{x+3} = \frac{1}{x}$$
.

19

Answer(b)(iii) x =[3]

$$p = \frac{t}{q-1}$$

Find q in terms of p and t.

Ex

A farmer makes a rectangular enclosure for his animals.

He uses a wall for one side and a total of 72 metres of fencing for the other three sides.

The enclosure has width x metres and area A square metres.

(a) Show that $A = 72x - 2x^2$.

Answer (a)

(b) Factorise completely $72x - 2x^2$.

- Answer(b) [2]
- (c) Complete the table for $A = 72x 2x^2$.

x	0	5	10	15	20	25	30	35
A	0	310	520			550	360	

(d) Draw the graph of $A = 72x - 2x^2$ for $0 \le x \le 35$ on the grid opposite.

[2]

For

Examiner Use

[3]

In the right-angled triangle *ABC*, AB = x cm, BC = (x + 7) cm and AC = 17 cm.

(i) Show that $x^2 + 7x - 120 = 0$.

Answer(a)(i)

(ii) Factorise $x^2 + 7x - 120$.

Answer(a)(ii) [2]

For Examine

Use

[3]

(iii) Write down the solutions of $x^2 + 7x - 120 = 0$.

Answer(a)(iii) x = [1]

(iv) Write down the length of *BC*.

Answer(a)(iv) BC = cm [1]

The rectangle and the square shown in the diagram above have the same area.

(i) Show that $2x^2 - 15x - 9 = 0$.

Answer(b)(i)

(ii) Solve the equation $2x^2 - 15x - 9 = 0$. Show all your working and give your answers correct to 2 decimal places.

Answer(b)(ii) x = or x = [4]

Fo Exami

Us

[3]

(iii) Calculate the perimeter of the square.

3 (a) Expand the brackets and simplify.

x(x+3)+4x(x-1)

(d) Solve the equation.

 $2x^2 + 5x + 1 = 0$

Show all your working and give your answers correct to 2 decimal places.

Answer(a) [2]

(b) Simplify $(3x^3)^3$.

Answer(b) [2]

(c) Factorise the following completely.

(i) $7x^7 + 14x^{14}$

Answer(c)(i) [2]

(ii) xy + xw + 2ay + 2aw

Answer(c)(ii) [2]

Fo