5072 CHEMISTRY (NEW PAPERS WITH SPA)

TOPIC 6: CHEMICAL REACCTIONS

5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 6: CHEMCIAL REACTIONS

SUB-TOPIC 6.1
SPEED OF REACTION

LEARNING OUTCOMES

1. Describe the effect of concentration, pressure, particle size and temperature on the speeds of reactions and explain these effects in terms of collisions between reacting particles
2. Define the term catalyst and describe the effect of catalysts (including enzymes) on the speeds of reactions
3. Explain how pathways with lower activation energies account for the increase in speeds of reactions
4. State that some compounds act as catalysts in a range of industrial processes and that enzymes are biological catalysts (see 5(b), 6.1(c) and 10(d))
5. Suggest a suitable method for investigating the effect of a given variable on the speed of a reaction
6. Interpret data obtained from experiments concerned with speed of reaction

A Introduction

- The speed of reaction measures how fast the reaction takes place.
- Different reactions occur at different speeds.
- Most precipitation reactions occur very quickly
> E.g. A white precipitate of Silver Chloride appears the moment aqueous Silver Nitrate is added to dilute Hydrochloric Acid.
- Rusting of iron takes a very long time to complete.
- During a chemical reaction:
> The quantity of the reactants decreases with time.
> The quantity of the products increases with time.
- Hence, the speed of reaction can be determined by:
$>$ How fast the reactant is being used up
$>$ How fast the product is being produced.
- Often, a graph is drawn to follow-up on the experiments:
$>$ The gradient of the graph represents the speed of reaction.
> The gradient of a tangent to the curve gives the speed of reaction at that instant.
> The steeper the gradient, the faster the speed of reaction.
- Three experimental methods are used to determine the speed of a chemical reaction:

Method	Procedure	Follow-Up
Measuring the time for a reaction to be completed.	- Obtain two pieces of Magnesium ribbon 2 cm in length. - Drop one piece into $5 \mathrm{~cm}^{3}$ of 1 M Hydrochloric Acid. - Drop the other piece into $5 \mathrm{~cm}^{3}$ of 1 M Sulphuric Acid. - Record the times taken for the Magnesium ribbon to completely dissolve. > Hydrochloric Acid: 100s $>$ Sulphuric Acid: 50s	- Since the same amount of Magnesium is used in both cases, the speed of reaction is inversely proportional to the time taken for the reaction to be completed. - The shorter the time taken for the reaction to be completed, the faster the speed of reaction > Hydrochloric Acid: 0.01/s > Sulphur Acid: 0.02/s - Hence, the speed of reaction using Sulphuric Acid is twice the speed of reaction using Hydrochloric Acid.

Measuring the quantity of a product formed in a fixed interval of time.	- Pour $50 \mathrm{~cm}^{3}$ of Hydrochloric Acid into a conical flask. - Place the flask on an electronic balance. - Add about 20 g of Marble chips into the Acid - Record the mass of Carbon Dioxide produced every 30 seconds. - Plot a graph of mass of Carbon Dioxide produced against time.	From the graph, - The gradient of the tangent at $t=0$ indicates the initial speed of reaction. $>$ The initial speed of reaction is the greatest. - The gradient decreases with time $>$ The speed of reaction decreases with time. - The gradient of the tangent at $t=t_{1}$ $>$ Speed of reaction is 0 . $>$ The reaction stops at $t=t_{1}$	
Measuring the quantity of a reactant remaining after a fixed interval of time.	- Mix Ethanol and Ethanoic Acid together. - At 5 minute intervals, pipette $2 \mathrm{~cm}^{3}$ of the reaction mixture. - Titrate the reaction mixture with standard Sodium Hydroxide solution. - Record the volume of Sodium Hydroxide used. - Plot a graph of Volume of Sodium Hydroxide added against time.	From the graph, - The gradient of the tangent at $t=0$ indicates the initial speed of reaction. The initial speed of reaction is the greatest. - The gradient decreases with time $>$ The speed of reaction decreases with time. - The gradient of the tangent at $t=t_{1}$ $>$ Speed of reaction is 0 . $>$ The reaction stops at $t=t_{1}$	

B The Collision Theory

- The collision theory is used to explain how a chemical reaction occurs.
- According to the collision theory:
- A chemical reaction occurs when reactant particles collide with each other.
> Not all collisions are effective, (effective collisions result in the formation in the products.)
> An effective collision occurs when the reactant particles:
- Have sufficient energy to overcome the activation energy of the reaction.
- Collide at the proper orientation.
- The activation energy of a reaction is the energy barrier which the reactant particles must overcome to start the reaction.
- Hence the speed of reaction depends on the number of effective collisions between reacting particles.
- The greater the number of effective collisions per unit time, the higher the speed of reaction.

C Investigating Factors affecting Speed of Reaction

Factor	To increase Speed of Reaction...	Experimentation	Interpretation of Data
Concentration	Increase concentration of reactants - The higher the concentration, the greater the number of reacting particles per unit volume - Reactant particles collide more often - Total number of collisions per unit time increases - This increases the number of effective collisions		Same mass of Calcium Carbonate (Limiting Reagent) was used in both experiments. - Hence, the same volume of Carbon Dioxide is collected in both experiments. - The speed of reaction in Experiment II is higher because: The reaction took a shorter time to complete. > The gradient to the curve at time $=0$ is steeper
Pressure of Gaseous Reactants	Increasing the pressure - At higher pressures, the concentration of gases increases - The reacting particles are crowded into a smaller volume enabling the particles to collide more frequently. - The frequency of effective collisions will thus increase.		

Particle Size of Solid reactants	Decreasing the particle size - Breaking up a solid reactant into smaller pieces increases its surface area. - Exposing a larger surface area for collisions between reacting particles results in more collisions per unit time. - With more collisions, the number of effective collisions per unit time increases		\square $(\mathrm{aq}) \rightarrow$ (g) zinc is changed. s stay constant. Experiment II $50 \mathrm{~cm}^{3} 1 \mathrm{M} \mathrm{HCl}$ 0.1 g powdered Zinc Room Temp was weighed and ${ }^{3}$ of 1 M cid. Hydrogen given d every 30s.			
Temperature	Increasing the Temperature - At higher temperatures, reacting particles have more kinetic energy to move around faster and more vigorously. - More collisions per unit time would produce a higher frequency of effective collisions.	- Reaction $\begin{aligned} & \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \\ & 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+ \\ & \mathrm{SO}_{2}(\mathrm{~g}) \end{aligned}$ - Temperature of reactant solution is changed. - $50 \mathrm{~cm}^{3}$ of 0.01 M Sodium		$x=$ of reaction/s		
				Experiment	$\begin{aligned} & \text { Temp/ } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Time Taken/
				I	30	80
				II	35	60

Enzymes

- Enzymes are biological catalysts which speed up reactions in living things.
- Enzymes are made inside animals and plants.
- Each enzyme is a chemical substance which:
$>$ Is made of a protein
$>$ Speeds up just one particular reaction.
$>$ Works best at one particular temperature
$>$ Is destroyed by extreme temperatures, i.e. too hot or too cold.
- Many chemical reactions in plants and animals use enzymes.
- Without enzymes, life would be impossible.
- The digestion of food involves many enzymes:
> Ptyalin: Found in saliva, speeds up the digestion of food in the mouth.
$>$ Gastric Juice: Contains several enzymes for the digestion of food in the stomach
- Industrial uses of Enzymes:
> Addition to detergents
> Used to make meat tougher
$>$ Used to convert sugars to alcohol (Fermentation, using the enzyme in yeast)
$>$ Antibiotics that kill harmful bacteria, produced by enzymes in fungi (e.g. Penicillin)

