5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES

5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

LEARNING OUTCOMES

a) Be able to write formulae of simple compounds
b) Be able to write balanced chemical and ionic equations

A Symbols and Formulae

- A symbol is used to represent one atom of an element.
- The symbol can be a letter or two letters, the first of which must be a capital.
> Ag stands for 1 atom of Silver
- Au stands for 1 atom of Gold
- An integer in front of a symbol indicates the number of that atom.
> 3 Pb represents 3 atoms of Lead
$>5 \mathrm{Sn}$ represents 5 atoms of Tin
- A formula is used to represent the smallest unit of a substance.
- The formula of a substance gives the composition of the substance, i.e. it shows the relative numbers of atoms or ions that have combined together.
$>$ Substance is an element
- Br_{2} represents 1 molecule of Bromine
- 1 molecule of Bromine contains 2 Br atoms
- $2 \mathrm{Br}_{2}$ represents 2 molecules of Bromine
- 2 molecules of Bromine contains 4 Br atoms
> Substance is a covalent compound
- CO_{2} represents 1 molecule of Carbon Dioxide
- 1 molecule of Carbon Dioxide contains 1 C atom and 2 O atoms
- $4 \mathrm{CO}_{2}$ represents 4 molecules of Carbon Dioxide
- 4 molecules of Carbon Dioxide contains 4 C atoms and 8 O atoms
$>$ Substance is an ionic compound
- CaCl_{2} represents 1 unit of Calcium Chloride
- 1 unit of Calcium Chloride contains 1 Ca atom and 2 Cl atoms
- $3 \mathrm{CaCl}_{2}$ represents 3 units of Calcium Chloride
- 3 units of Calcium Chloride contains 3 Ca atoms and 6 Cl atoms

B Writing Formulae of Simple Compounds

- The valency of an element is needed to be able to write the formulae of a compound
- The valency of an element is a number which shows its combining power
- In ionic compounds, the valency of an ion is equal to its charge

Positive lons (Cations)			Negative lons (Anions)		
H^{+}	Hydrogen	1	F	Fluoride	1
NH_{4}^{+}	Ammonium	1	Cl^{-}	Chloride	1
Ag^{+}	Silver (I)	1	Br	Bromide	1
Na^{+}	Sodium	1	I^{-}	Iodide	1
$\mathrm{~K}^{+}$	Potassium	1	OH^{-}	Hydroxide	1
Ba^{2+}	Barium	2	NO_{2}^{-}	Nitrite	1
Ca^{2+}	Calcium	2	NO_{3}^{-}	Nitrate	1
Cu^{2+}	Copper (II)	2	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogencarbonate	1
Fe^{2+}	Iron (II)	2	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Ethanoate	1
Mg^{2+}	Magnesium	2	$\mathrm{~S}^{2-}$	Sulphide	2
$\mathrm{~Pb}^{2+}$	Lead (II)	2	O^{2-}	Oxide	2
Sn^{2+}	Tin (II)	2	$\mathrm{SO}_{3}{ }^{2-}$	Sulphite	2
Zn^{2+}	Zinc	2	$\mathrm{SO}_{4}{ }^{2-}$	Sulphate	2
Ni^{2+}	Nickel (II)	2	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate	2
Al^{3+}	Aluminium	3	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate (VI)	2
Cr^{3+}	Chromium (III)	3	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Dichromate (VI)	2
Fe^{3+}	Iron (III)	3	$\mathrm{PO}_{4}{ }^{3-}$	Phosphate	3

- In writing formulae of ionic compounds, note that:
> lonic compounds are made up of positive and negative ions

In an ionic compound, the total positive charges must equal the total negative charges, i.e. the total charges in an ionic compound must equal 0.

Example 1	Sodium Chloride	
Formula of lons	Na^{+}	Cl^{-}
Valency of lons	1	1
Simplest Ratio of combining ions	1	1
Formula	Iron (II) Phosphate	
Example 2	NaCl	
Formula of lons	Fe^{2+}	$\mathrm{PO}_{4}{ }^{3-}$
Valency of lons	2	3
Simplest Ratio of combining ions	3	2
Formula	$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	

- In covalent compounds, the valency of an element is the number of covalent bonds which it can form with Hydrogen atoms.

H	Hydrogen	1	O	Oxygen	2
F	Fluorine	1	N	Nitrogen	3
Cl	Chlorine	1	C	Carbon	4
Br	Bromine	1	P	Phosphorus	3 and 5
I	lodine	1	S	Sulphur	2,4 and 6

- In writing formulae of simple binary covalent compounds, the total valency of the two combining elements must be equal

Example 1	Hydrogen Chloride		
Formula of Elements	H	Cl	
Valency of Elements	1	1	
Simplest Ratio of combining atoms	1	1	
Formula	Tetrafluoromethane		
Example 2	C	HCl	
Formula of Elements	4	1	
Valency of Elements	1	4	
Simplest Ratio of combining atoms	CF_{4}		
Formula			

C Writing Balanced Chemical Equations

- A chemical equation summarises what happens during a chemical equation.
- It provides information about:
> The nature of the chemicals reacting together (reactants) and the resultant chemicals produced (products)
> The quantities of reactants reacting together and the amount of products produced
> The physical states of the reactants and products
- The write an equation,

1. Write down a word equation using correct formulae for all the reactants and products
2. Write down the unbalanced equation using correct formulae for all the reactants and products
3. Balance the equation by inspected, starting with the most complicated molecule first. Write the appropriate numbers in front of each formula to ensure that the same number of each type of atom appears on both sides of the equation.
4. Write the state symbol after each formula

- Remember:
> Never adjust the formula of a substance, i.e. do not change the subscripts in the formula of the reactants and/ or products to suit your balanced equation
> Atoms cannot be created or destroyed during a chemical reaction

A number in front of each formula multiplies every symbol that follows it.

Example 1	Formation of Iron (III) Chloride from heating iron wool in Chlorine gas
Words	Iron + Chlorine \rightarrow Iron (III) Chloride
Formulae	$\mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}$
Balance	Reactants: 1 atom of $\mathrm{Fe}, 2$ atoms of Cl Products: 1 atom of $\mathrm{Fe}, 3$ atoms of Cl To balance Cl , find lowest common multiple of 2 and 3 . Hence, both sides must have 6 atoms of Cl . Thus, change Cl_{2} to $3 \mathrm{Cl}_{2}$ and FeCl_{3} to $2 \mathrm{FeCl}_{3}$. $\mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ Reactants: 1 atom of $\mathrm{Fe}, 6$ atoms of Cl Products: 2 atoms of $\mathrm{Fe}, 6$ atoms of Cl To balance Fe , find lowest common multiple of 1 and 2 . Hence, both sides must have 2 atoms of Fe . Thus, change Fe to 2 Fe . $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ Reactants: 2 atoms of $\mathrm{Fe}, 6$ atoms of Cl Products: 2 atoms of Fe 6 atoms of Cl
States	$\mathrm{Fe}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeCl}_{3}(\mathrm{~s})$
Example 2	Balance: $\mathrm{Pb}_{3} \mathrm{O}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{PbO}_{2}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
Balance	Reactants: 3 atoms of $\mathrm{Pb}, 7$ atoms of $\mathrm{O}, 1$ atom of $\mathrm{N}, 1$ atom of H
	Products: 2 atoms of $\mathrm{Pb}, 9$ atoms of $\mathrm{O}, 2$ atoms of $\mathrm{N}, 2$ atoms of H
	To balance Pb , just change $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ to $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$
	$\mathrm{Pb}_{3} \mathrm{O}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{PbO}_{2}+2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$ Reactants: 3 atoms of $\mathrm{Pb}, 7$ atoms of $\mathrm{O}, 1$ atom of $\mathrm{N}, 1$ atom of H Products: 3 atoms of $\mathrm{Pb}, 15$ atoms of $\mathrm{O}, 4$ atoms of $\mathrm{N}, 2$ atoms of H
	To balance N , find the lowest common multiple of 1 and 4 . Hence, both sides must have 4 atoms of N . Thus, change HNO_{3} to $4 \mathrm{HNO}_{3}$

$$
\mathrm{Pb}_{3} \mathrm{O}_{4}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{PbO}_{2}+2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Reactants: 3 atoms of $\mathrm{Pb}, 16$ atoms of $\mathrm{O}, 4$ atoms of $\mathrm{N}, 4$ atoms of H
Products: 3 atoms of $\mathrm{Pb}, 15$ atoms of $\mathrm{O}, 4$ atoms of $\mathrm{N}, 2$ atoms of H
To balance H , find the lowest common multiple of 2 and 4 . Hence, both sides must have 4 atoms of H . Thus, change $\mathrm{H}_{2} \mathrm{O}$ to $2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pb}_{3} \mathrm{O}_{4}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{PbO}_{2}+2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Reactants: 3 atoms of $\mathrm{Pb}, 16$ atoms of $\mathrm{O}, 4$ atoms of $\mathrm{N}, 4$ atoms of H
Products: 3 atoms of $\mathrm{Pb}, 16$ atoms of $\mathrm{O}, 4$ atoms of $\mathrm{N}, 4$ atoms of H
States
$\mathrm{Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

D Writing lonic Equations

- Ionic compounds that dissolve in water dissociate completely into ions
- Strong acids and alkalis dissociate completely into ions when dissolved in water
- Spectator ions, i.e. ions that do not take part in the reaction, are omitted from the equation
- An ionic equation must be balanced in terms of:
> Number of atoms of each element

Total charges carried by the ions

- The procedure is that:
> Write the Word Equation
$>$ Write the formulae of the compounds corresponding the word equation
> Write the state symbols of the compounds
> Split up the ions of aqueous compounds ONLY.
> Omit the spectator ions, i.e. ions that are present on both sides
> Balance the equation

